Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insulin plays central role in aging, Brown scientists discover


The life expectancy of fruit flies increases an average of 50 percent when signals within cells of fat tissue are blocked or altered, new Brown University research shows. Published in the current issue of Nature, results of the study suggest that reduced levels of insulin in one tissue regulates insulin throughout the body to slow aging – a finding that brings science one step closer to cracking the longevity code.

When the chemical messages sent by an insulin-like hormone are reduced inside the fat cells of fruit fly, the fly’s lifespan increases significantly, according to new research conducted at Brown University.

A similar phenomenon has already been observed in worms, according to Brown biology professor Marc Tatar. But never before, Tatar says, has it been seen in fruit flies – whose 13,601 genes are shared in many ways by humans.

The experiment, detailed in the current issue of Nature, also sheds important light on the role insulin plays in the regulation of its own synthesis.

Block the hormone’s action inside a few specific cells, the study shows, and the entire body stays healthier longer. Scientists previously thought insulin triggered other hormones to achieve this effect, but Tatar and his team found that insulin regulates its own production and that it directly regulates tissue aging. The principle: Keep insulin levels low and cells are stronger, staving off infection and age-related diseases such as cancer, dementia and stroke.

“Think of the body like a car,” Tatar says. “We knew insulin controlled the car’s speed by regulating things like the gas pedal and the fuel injectors. Now we know that insulin is also the fuel that makes the engine go.”

To conduct the experiment, Tatar and four other Brown researchers created a line of genetically altered flies which had dFOXO – a protein controlled by the fly equivalent of insulin – inserted into the genetic material of fat cells near their brains.

Some flies were fed mifepristone, a chemical copy of progesterone. This hormone activated a switch attached to dFOXO, which in turn repressed the normal insulin signals inside the cells. As a surprising result, insulin production was lowered throughout the body. These flies lived an average of 50 days – 18 days longer than flies whose insulin signals went unchecked.

“We now know that insulin is a direct player in the aging process,” Tatar says. “So the research fits some key puzzle pieces together. And it should change the way we think about aging.”

Tatar’s research is part of a growing body of evidence linking low insulin levels to increased longevity. In recent years, scientists have found that mice and other animals live longer when they eat a low-calorie diet, which reduces insulin production.

“Aging regulation is a complex physiological process of nutritional inputs, metabolic regulation and hormone secretion,” Tatar says. “But we still have so many unanswered questions.”

Tatar and his team conducted their research over an 18-month period. The work was funded by the National Institutes of Health, the American Federation of Aging Research, the Ellison Medical Foundation and Pfizer Inc.

Wendy Lawton | Brown University
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>