Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin plays central role in aging, Brown scientists discover

03.06.2004


The life expectancy of fruit flies increases an average of 50 percent when signals within cells of fat tissue are blocked or altered, new Brown University research shows. Published in the current issue of Nature, results of the study suggest that reduced levels of insulin in one tissue regulates insulin throughout the body to slow aging – a finding that brings science one step closer to cracking the longevity code.



When the chemical messages sent by an insulin-like hormone are reduced inside the fat cells of fruit fly, the fly’s lifespan increases significantly, according to new research conducted at Brown University.

A similar phenomenon has already been observed in worms, according to Brown biology professor Marc Tatar. But never before, Tatar says, has it been seen in fruit flies – whose 13,601 genes are shared in many ways by humans.


The experiment, detailed in the current issue of Nature, also sheds important light on the role insulin plays in the regulation of its own synthesis.

Block the hormone’s action inside a few specific cells, the study shows, and the entire body stays healthier longer. Scientists previously thought insulin triggered other hormones to achieve this effect, but Tatar and his team found that insulin regulates its own production and that it directly regulates tissue aging. The principle: Keep insulin levels low and cells are stronger, staving off infection and age-related diseases such as cancer, dementia and stroke.

“Think of the body like a car,” Tatar says. “We knew insulin controlled the car’s speed by regulating things like the gas pedal and the fuel injectors. Now we know that insulin is also the fuel that makes the engine go.”

To conduct the experiment, Tatar and four other Brown researchers created a line of genetically altered flies which had dFOXO – a protein controlled by the fly equivalent of insulin – inserted into the genetic material of fat cells near their brains.

Some flies were fed mifepristone, a chemical copy of progesterone. This hormone activated a switch attached to dFOXO, which in turn repressed the normal insulin signals inside the cells. As a surprising result, insulin production was lowered throughout the body. These flies lived an average of 50 days – 18 days longer than flies whose insulin signals went unchecked.

“We now know that insulin is a direct player in the aging process,” Tatar says. “So the research fits some key puzzle pieces together. And it should change the way we think about aging.”

Tatar’s research is part of a growing body of evidence linking low insulin levels to increased longevity. In recent years, scientists have found that mice and other animals live longer when they eat a low-calorie diet, which reduces insulin production.

“Aging regulation is a complex physiological process of nutritional inputs, metabolic regulation and hormone secretion,” Tatar says. “But we still have so many unanswered questions.”

Tatar and his team conducted their research over an 18-month period. The work was funded by the National Institutes of Health, the American Federation of Aging Research, the Ellison Medical Foundation and Pfizer Inc.

Wendy Lawton | Brown University
Further information:
http://www.brown.edu/Administration/News_Bureau//2003-04/03-149.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>