Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV takes cellular opportunities to aid infection

21.05.2004


Scientists will have a new view of how the AIDS virus (HIV) enters a target cell and begins its process of infection, thanks to a technique created by researchers at the Salk Institute.



The technique allows scientists to observe for the first time the steps taken by viruses like HIV after they enter a cell. The study was done with a chicken virus that was modified to contain the genes of HIV. Both the chicken virus and HIV are retroviruses, which means their genomes are made from RNA rather than DNA. When the viruses enter a host cell, their RNA genomes are converted to DNA, which integrates into the DNA of the host cell. This step is essential for the formation of new virus particles.

John Young, a Salk professor of infectious disease, and colleague Shakti Narayan reported their findings in the May 18 edition of the Proceedings of the National Academy of Sciences.


The research provides new insights into the chemical events that allow viruses like HIV to replicate within cells. Scientists have long known how HIV breaks into the host cell by merging with its surface layer. They’ve also known how the viral genome is copied and can hitch onto the cell’s genetic material and begin expressing proteins that aid infection. But they didn’t know the steps in between.

"This technique shows us what happens after the virus first steps in the door, and removes its coating," said Young. "We now know that molecules exist in cells that help the virus convert its RNA genome to DNA but we don’t yet know what those molecules are. Once we identify them, which this system allows, we may be able to manipulate them to halt viral DNA synthesis, and produce a new therapy for AIDS." This new technique uses a test-tube system to study the chemical players in virus infectivity, thereby allowing scientists to analyze infectivity in a setting not complicated by other cellular structures.

AIDS is a major epidemic in many developing countries in Africa and Asia, and has been responsible for more than 500,000 deaths in the United States. About 47 million people worldwide are afflicted with AIDS.

AIDS is currently incurable. However, cocktails that contain chemical agents that block various steps of viral replication have allowed millions of people to survive with the disease. "This work could provide us with another class of molecules to add to the cocktail," said Young. "Once we identify cellular factors that regulate HIV replication, we may be able devise new treatments for other viral infections, as well."


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Andrew Porterfield | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Life Sciences:

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>