Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


HIV takes cellular opportunities to aid infection


Scientists will have a new view of how the AIDS virus (HIV) enters a target cell and begins its process of infection, thanks to a technique created by researchers at the Salk Institute.

The technique allows scientists to observe for the first time the steps taken by viruses like HIV after they enter a cell. The study was done with a chicken virus that was modified to contain the genes of HIV. Both the chicken virus and HIV are retroviruses, which means their genomes are made from RNA rather than DNA. When the viruses enter a host cell, their RNA genomes are converted to DNA, which integrates into the DNA of the host cell. This step is essential for the formation of new virus particles.

John Young, a Salk professor of infectious disease, and colleague Shakti Narayan reported their findings in the May 18 edition of the Proceedings of the National Academy of Sciences.

The research provides new insights into the chemical events that allow viruses like HIV to replicate within cells. Scientists have long known how HIV breaks into the host cell by merging with its surface layer. They’ve also known how the viral genome is copied and can hitch onto the cell’s genetic material and begin expressing proteins that aid infection. But they didn’t know the steps in between.

"This technique shows us what happens after the virus first steps in the door, and removes its coating," said Young. "We now know that molecules exist in cells that help the virus convert its RNA genome to DNA but we don’t yet know what those molecules are. Once we identify them, which this system allows, we may be able to manipulate them to halt viral DNA synthesis, and produce a new therapy for AIDS." This new technique uses a test-tube system to study the chemical players in virus infectivity, thereby allowing scientists to analyze infectivity in a setting not complicated by other cellular structures.

AIDS is a major epidemic in many developing countries in Africa and Asia, and has been responsible for more than 500,000 deaths in the United States. About 47 million people worldwide are afflicted with AIDS.

AIDS is currently incurable. However, cocktails that contain chemical agents that block various steps of viral replication have allowed millions of people to survive with the disease. "This work could provide us with another class of molecules to add to the cocktail," said Young. "Once we identify cellular factors that regulate HIV replication, we may be able devise new treatments for other viral infections, as well."

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Andrew Porterfield | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection

24.10.2016 | Health and Medicine

Microbe hunters discover long-sought-after iron-munching microbe

24.10.2016 | Life Sciences

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

More VideoLinks >>>