Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV takes cellular opportunities to aid infection

21.05.2004


Scientists will have a new view of how the AIDS virus (HIV) enters a target cell and begins its process of infection, thanks to a technique created by researchers at the Salk Institute.



The technique allows scientists to observe for the first time the steps taken by viruses like HIV after they enter a cell. The study was done with a chicken virus that was modified to contain the genes of HIV. Both the chicken virus and HIV are retroviruses, which means their genomes are made from RNA rather than DNA. When the viruses enter a host cell, their RNA genomes are converted to DNA, which integrates into the DNA of the host cell. This step is essential for the formation of new virus particles.

John Young, a Salk professor of infectious disease, and colleague Shakti Narayan reported their findings in the May 18 edition of the Proceedings of the National Academy of Sciences.


The research provides new insights into the chemical events that allow viruses like HIV to replicate within cells. Scientists have long known how HIV breaks into the host cell by merging with its surface layer. They’ve also known how the viral genome is copied and can hitch onto the cell’s genetic material and begin expressing proteins that aid infection. But they didn’t know the steps in between.

"This technique shows us what happens after the virus first steps in the door, and removes its coating," said Young. "We now know that molecules exist in cells that help the virus convert its RNA genome to DNA but we don’t yet know what those molecules are. Once we identify them, which this system allows, we may be able to manipulate them to halt viral DNA synthesis, and produce a new therapy for AIDS." This new technique uses a test-tube system to study the chemical players in virus infectivity, thereby allowing scientists to analyze infectivity in a setting not complicated by other cellular structures.

AIDS is a major epidemic in many developing countries in Africa and Asia, and has been responsible for more than 500,000 deaths in the United States. About 47 million people worldwide are afflicted with AIDS.

AIDS is currently incurable. However, cocktails that contain chemical agents that block various steps of viral replication have allowed millions of people to survive with the disease. "This work could provide us with another class of molecules to add to the cocktail," said Young. "Once we identify cellular factors that regulate HIV replication, we may be able devise new treatments for other viral infections, as well."


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Andrew Porterfield | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>