Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Once a renin cell, always a renin cell

11.05.2004


In an unusual but useful example of cellular flip-flop, a new research study demonstrates that multiple cell types have the ability to temporarily switch into renin-secreting cells when they are needed to stabilize blood pressure. The research, published in the May issue of Developmental Cell, demonstrates that the recruited cells are direct descendants of cells that expressed renin at one time during development.



Renin is a hormone released into the blood by specialized cells in the walls of kidney blood vessels. Renin is released in response to sodium depletion and/or low blood pressure in the blood vessels of the kidneys and it plays a major role in regulating blood pressure generally in the body. Adult mammals can increase circulating renin, when necessary, by increasing the number of renin-synthesizing cells. Dr. R. Ariel Gomez from the University of Virginia and colleagues examined whether the ability of adult cells to synthesize renin was dependent on the cells’ original lineage. The researchers generated mice with a genetic marker that allowed visualization of renin-expressing cells even after the cell had differentiated into a non-renin-secreting cell type. Experimental manipulations known to recruit renin-expressing cells demonstrated that adult cells that were descendants of renin cells retained the capability to make renin when more of the hormone was required to stabilize blood pressure.

The researchers conclude that specific subpopulations of apparently differentiated cells are "held in reserve" to repeatedly respond by de-differentiating and expressing renin in response to stress and then re-differentiating when the crisis has passed. According to Dr. Gomez, "The experiments confirm that recruitment of renin-expressing cells is determined by the developmental history of the cells, which retain the memory to re-express the renin gene under physiological stress. The mice we have generated should be extremely valuable to delete genes specifically in the renin-expressing cell and therefore determine the precise cellular function of those genes independently of systemic influences."



Maria Luisa S. Sequeira Lopez, Ellen S. Pentz, Takayo Nomasa, Oliver Smithies, and R. Ariel Gomez: "Renin Cells Are Precursors for Multiple Cell Types that Switch to the Renin Phenotype When Homeostasis Is Threatened"

Publishing in Developmental Cell, Volume 6, Number 5, May 2004

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>