Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Once a renin cell, always a renin cell

11.05.2004


In an unusual but useful example of cellular flip-flop, a new research study demonstrates that multiple cell types have the ability to temporarily switch into renin-secreting cells when they are needed to stabilize blood pressure. The research, published in the May issue of Developmental Cell, demonstrates that the recruited cells are direct descendants of cells that expressed renin at one time during development.



Renin is a hormone released into the blood by specialized cells in the walls of kidney blood vessels. Renin is released in response to sodium depletion and/or low blood pressure in the blood vessels of the kidneys and it plays a major role in regulating blood pressure generally in the body. Adult mammals can increase circulating renin, when necessary, by increasing the number of renin-synthesizing cells. Dr. R. Ariel Gomez from the University of Virginia and colleagues examined whether the ability of adult cells to synthesize renin was dependent on the cells’ original lineage. The researchers generated mice with a genetic marker that allowed visualization of renin-expressing cells even after the cell had differentiated into a non-renin-secreting cell type. Experimental manipulations known to recruit renin-expressing cells demonstrated that adult cells that were descendants of renin cells retained the capability to make renin when more of the hormone was required to stabilize blood pressure.

The researchers conclude that specific subpopulations of apparently differentiated cells are "held in reserve" to repeatedly respond by de-differentiating and expressing renin in response to stress and then re-differentiating when the crisis has passed. According to Dr. Gomez, "The experiments confirm that recruitment of renin-expressing cells is determined by the developmental history of the cells, which retain the memory to re-express the renin gene under physiological stress. The mice we have generated should be extremely valuable to delete genes specifically in the renin-expressing cell and therefore determine the precise cellular function of those genes independently of systemic influences."



Maria Luisa S. Sequeira Lopez, Ellen S. Pentz, Takayo Nomasa, Oliver Smithies, and R. Ariel Gomez: "Renin Cells Are Precursors for Multiple Cell Types that Switch to the Renin Phenotype When Homeostasis Is Threatened"

Publishing in Developmental Cell, Volume 6, Number 5, May 2004

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>