Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research at UNC shows ribosomes do not function as conventional enzymes

11.05.2004


Contrary to what some scientists have suggested, key intracellular particles known as ribosomes serve as mechanical matchmakers or readout devices rather than acting chemically to speed up reactions in the body the way enzymes do, University of North Carolina at Chapel Hill researchers and colleagues have discovered.



A report on the findings by Drs. Annette Sievers and Richard Wolfenden of the UNC School of Medicine appears in the new issue of the Proceedings of the National Academy of Sciences.

Besides Sievers and Wolfenden, report authors are doctoral student Malte Beringer and Dr. Marina V. Rodnina of the University of Witten/Herdecke in Witten, Germany.


"Enzymes, of which we have hundreds, participate chemically in the transformation of biological molecules by making and breaking bonds," said Wolfenden, Alumni Distinguished professor of biochemistry and biophysics. "A hallmark of that direct chemical involvement is that their catalytic effects are extremely temperature dependent. The question was whether the ribosome acts as an enzyme since there has been considerable interest in whether this particle does that."

Ribosomes are critical sites of protein synthesis, he said. Inside those particles, amino acids are laid down in proteins in the order specified by the genetic code.

In general, enzymes, which are biological catalysts, facilitate a chemical transformation by lowering the energy barrier, Sievers said.

"One can imagine this as two paths over a mountain," she said. "The path without the enzyme is much higher, and so it takes more energy to cross the mountain. The path on the enzyme is lower, and so it is easier to follow it."

Energy has two components, Sievers said. One is heat (enthalpy), the other one refers to the order of a system (entropy). It’s possible for an enzyme to lower either of those energy components. Direct chemical involvement of an enzyme is characterized by lowering the enthalpy of the activation barrier and has often been observed.

"In our present work we tested the contribution of enthalpy and entropy to lowering the activation energy barrier," she said. "Malte did this by comparing the energy barrier of the reaction when the ribosome was present, and I did it when the ribosome was not present."

The reactions both with the ribosome present and without the ribosome have the same enthalpic activation barrier, the researchers found.

"The means by which the ribosome speeds up the chemical transformation is purely entropic in origin -- the ribosome acts as a mechanical readout device, rather than speeding up the reaction in the way that conventional enzymes do," Sievers said.

The experiments will help scientists narrow their view of how ribsomes function and understand them better, Wolfenden said.

"Annette and Malte’s discovery has important implications for the design of inhibitors of protein synthesis and might ultimately furnish a new basis for drug design," he said. "Their work shows that the ribosome’s effect is to introduce order into chaos."

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>