Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromatin remodeling may open up DNA to RNA-mediated silencing

04.05.2004


In a finding that deepens our understanding of epigenetic regulation, researchers at the Gregor Mendel Institute of Molecular Plant Biology in Vienna have identified a novel protein in Arabidopsis that may help so-called short guide RNAs and silencing effector proteins target specific DNA sequences for modification.



The ’nuclear side’ of RNA interference (RNAi) is increasingly recognized as an important part of RNA-mediated gene silencing pathways. Short RNAs and proteins of the RNAi machinery can direct epigenetic modifications, such as DNA cytosine methylation and histone methylation, to homologous regions of the genome in various organisms. Still unclear is whether short RNAs interact directly with target DNA sequences by base pairing and if so, how they gain access to target DNA that is packaged into nucleosomes in chromatin.

In a genetic a screen for mutants defective in RNA-directed DNA methylation in Arabidopsis thaliana, Dr. Tatsuo Kanno and colleagues identified DRD1, a previously undefined SNF2 chromatin remodeling protein in plants. The involvement of DRD1 in RNA-directed DNA methylation suggests that chromatin remodeling is required to render nucleosomal DNA accessible to RNA signals and/or DNA methyltransferases. DRD1 is the first chromatin remodeling factor implicated in an RNA-guided epigenetic modification of the genome.



Tatsuo Kanno, M. Florian Mette, David P. Kreil, Werner Aufsatz, Marjori Matzke, and Antonius J.M. Matzke: "Involvement of Putative SNF2 Chromatin Remodeling Protein DRD1 in RNA-Directed DNA Methylation"

Publishing in Current Biology, Volume 14, Number 9, May 4, 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>