Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists report how protons induce water cages

03.05.2004


Researchers from Yale University, University of Pittsburgh and University of Georgia have reported new data on how the fundamental arrangement of water molecules is affected by the presence of protons. The work appears in Sciencexpress.



This research is about the surprising flexibility of water molecules that makes water the medium of choice for biological systems. The study examines the 50-year-old question of how many water molecules share a proton, a crucial issue in the transportation of charge in biological processes.

Models predict a proton to be strongly bound to one water molecule (Eigen model) or shared between two water molecules (Zundel model) in a manner that depends on how many water molecules are available. With 21 molecules, it was thought that the water could form a "nanocage" structure that holds the Eigen form of the proton in the center. This report confirms the formation of a dodecahedral (20-sided) cage, but the data displayed no trace of the Eigen species.


To determine how a precisely determined number of water molecules interconnect to form these cages, the scientists first weighed the cluster (after the proton was added), and then monitored changes in the infrared absorption that occurred upon addition of each new water molecule.

"The idea was brought to my attention by John Fenn, Yale Professor Emeritus of Chemical Engineering and Nobel Prize winner in Chemistry ’02," said Mark Johnson, professor of chemistry and head of the Yale research team. "Fenn suggested that we might be able to crack this important problem with current technology. We collaborated with groups at Pitt and Georgia using experimental techniques developed in my lab and analyzed the results using Pitt’s super computers."

"Water is tricky because sometimes it is just a solvent. Like with coffee. All water does for me is hold the caffeine there, evenly distributed throughout the solution" said Johnson. "For many other things, particularly in biology, water is actively participating in chemical change. It is the medium for shuttling protons. Individual water molecules become part of a network or wire that guides the flow of protons."

In nature, proton transport is unlike other things that move through water while retaining their molecular identity. Protons move much more quickly by trading water partners down the chain, like the executive desk toy with five steel balls. The proton that comes out at the end is not the same one that went in. One example where this mechanism is being currently entertained is in photosynthesis, where the conversion of light energy to useful energy by charge separation may be mediated by water molecules. Molecules once thought to be innocent bystanders may turn out to be the main players!


The research was funded by the National Science Foundation and the Department of Energy.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu/
http://www.sciencexpress.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>