Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists report how protons induce water cages

03.05.2004


Researchers from Yale University, University of Pittsburgh and University of Georgia have reported new data on how the fundamental arrangement of water molecules is affected by the presence of protons. The work appears in Sciencexpress.



This research is about the surprising flexibility of water molecules that makes water the medium of choice for biological systems. The study examines the 50-year-old question of how many water molecules share a proton, a crucial issue in the transportation of charge in biological processes.

Models predict a proton to be strongly bound to one water molecule (Eigen model) or shared between two water molecules (Zundel model) in a manner that depends on how many water molecules are available. With 21 molecules, it was thought that the water could form a "nanocage" structure that holds the Eigen form of the proton in the center. This report confirms the formation of a dodecahedral (20-sided) cage, but the data displayed no trace of the Eigen species.


To determine how a precisely determined number of water molecules interconnect to form these cages, the scientists first weighed the cluster (after the proton was added), and then monitored changes in the infrared absorption that occurred upon addition of each new water molecule.

"The idea was brought to my attention by John Fenn, Yale Professor Emeritus of Chemical Engineering and Nobel Prize winner in Chemistry ’02," said Mark Johnson, professor of chemistry and head of the Yale research team. "Fenn suggested that we might be able to crack this important problem with current technology. We collaborated with groups at Pitt and Georgia using experimental techniques developed in my lab and analyzed the results using Pitt’s super computers."

"Water is tricky because sometimes it is just a solvent. Like with coffee. All water does for me is hold the caffeine there, evenly distributed throughout the solution" said Johnson. "For many other things, particularly in biology, water is actively participating in chemical change. It is the medium for shuttling protons. Individual water molecules become part of a network or wire that guides the flow of protons."

In nature, proton transport is unlike other things that move through water while retaining their molecular identity. Protons move much more quickly by trading water partners down the chain, like the executive desk toy with five steel balls. The proton that comes out at the end is not the same one that went in. One example where this mechanism is being currently entertained is in photosynthesis, where the conversion of light energy to useful energy by charge separation may be mediated by water molecules. Molecules once thought to be innocent bystanders may turn out to be the main players!


The research was funded by the National Science Foundation and the Department of Energy.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu/
http://www.sciencexpress.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>