Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach offers potential drug-discovery shortcut

19.04.2004


Researchers find drug that may suppress genetic mutation using a novel screening approach

Researchers at Massachusetts General Hospital have developed a way of identifying promising new drugs that may get around a major challenge in drug discovery. In the May issue of Nature Biotechnology the team from the MGH Cardiovascular Research Center (CVRC) describes using an animal model to screen for a compound that suppresses a serious genetic mutation. Their success did not rely on first identifying a molecular target for the new drug, something that is a key bottleneck in current procedures. The study is being released today on the journal’s website.

"Currently most drugs are designed to act on a specific protein, but for most diseases we still don’t know what the protein targets should be," says Randall Peterson, PhD, of the MGH CVRC, the paper’s lead author. "This is a totally different approach that shows how, without knowing the best target, you can screen for drugs that could reverse a disease and in the process learn something new about the underlying biology."



The researchers started with embryos of zebrafish – a tiny tropical fish used as a model of vertebrate development – with a mutation called gridlock, which prevents the correct development of the circulatory system in the lower portion of the body. A panel of these embryos was exposed to a very diverse library of small molecules – 5,000 in all – to see if any would prevent expression of the gridlock mutation. Two similar molecules were identified that suppressed the mutation, allowing the embryos to develop normally. The one that appeared more powerful, called GS4012, was chosen for further study.

The gridlock-suppressing effects of GS4012 were found to vary with dosage, and no vascular abnormalities were seen at the doses studied. Application of the compound appeared to be most effective at a developmental stage right before and during the formation of major vascular structures. Further experiments showed that GS4012 appears to promote the activity of the angiogenesis factor VEGF and also induces the development of vascular networks in cultured human vascular cells.

"We had a strain of fish with a very specific arterial defect, and although we knew which gene was responsible, there was a lot we didn’t know about the molecular processes disrupted by that mutation," says Peterson "We were able to find a compound that could reverse the mutation and are hopeful that it will provide fundamental new insights into vascular development and disease.

"While this molecule may eventually have clinical application in promoting vascular growth after heart attack, stroke or injury, this new way of identifying potential new drugs may have an even greater impact," he adds. In addition to further studying the mechanism behind the action of the gridlock suppressors they identified, the research team hopes to apply this new drug-discovery approach to other diseases.


###
In addition to Peterson, an assistant professor of Medicine at Harvard Medical School, the research team includes senior author Mark Fishman, MD, formerly director of the CVRC and chief of MGH Cardiology, now president of the Novartis Institute for Biomedical Research; Stanley Shaw, MD, PhD, Travis Peterson, David Milan, MD, and Calum MacRae, MB, ChB, of the MGH CVRC; Tao Zhong, PhD, of Vanderbilt School of Medicine; and Stuart Schreiber, PhD, of Howard Hughes Medical Institute at Harvard University. The research was supported by grants from the National Institute of Health, the Ned Sahin Research Fund for Supporting Developmental Plasticity, and a research agreement with Novartis Institute for Biomedical Research.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $400 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>