Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify leukemia-linked pathway targeted by a new kinase inhibitor

19.04.2004


New target blocks B-ALL, boosts Gleevec’s effectiveness against CML in mice



Three years ago, using the first of a new class of drugs known as "small molecule kinase inhibitors," medicine slammed shut a door used by cancer. Researchers at The Jackson Laboratory just found another door that kinase inhibitors may close to cancer.

The gene BCR-ABL1 causes two types of leukemia: chronic myelogeneous leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). In both cancers, enzymes that should regulate the growth and development of white blood cells go awry, resulting in uncontrolled growth of the cells. The Swiss-based pharmaceutical company Novartis developed Gleevec, the first kinase inhibitor used to fight cancer by blocking the errant enzyme. It proved effective against chronic phase of CML, but not the advanced phase or against B-ALL. In some patients, it seems CML can develop a resistance to Gleevec.


In the May 2004 issue of Nature Genetics, a research team headed by Shaoguang Li, M.D., Ph.D., of The Jackson Laboratory, announces success with another kinase inhibitor that blocks a different path used by cancer. Studying mice, the researchers discovered that the BCR-ABL1 gene activates three additional enzymes that lead to B-ALL leukemia. One of these enzymes may also be involved when CML patients no longer respond to Gleevec.

"Because of drug resistance, it becomes increasingly difficult to stop progression of and cure this disease by targeting at only one place in a multi-molecule-involved signaling pathway used by cancer," says Dr. Li. "So we needed to find a combined drug therapy targeting simultaneously more than one places in the pathway."

First, the team developed the first efficient and accurate mouse models of both forms of BCR-ABL1-induced leukemia. Next, they discovered that three of the Src kinase class of enzymes are required for B-ALL but not for CML, suggesting that different therapeutic strategies should be used for treating these two diseases although they are induced by the same BCR-ABL1 cancer-causing gene. Finally, in drug treatment studies, they found that the kinase inhibitor, known as CGP76030 produced by Novartis, blocked those three critical Src kinase enzymes. The drug impaired the proliferation of B-lymphoid leukemic cells and prolonged the survival of mice with B-ALL. Their findings suggest additional therapeutic agents for treating this type of leukemia in humans.

ALL is the type of leukemia that predominantly strikes children. Among ALL cases, 85% are of the B-ALL type.

According to oncologist-turned-researcher Dr. Li, the preclinical studies suggest a specific prediction: "Drugs targeting the Src kinases may be useful for the therapy of BRC-ABL1-induced acute leukemia, particularly B-ALL. While these drugs are not effective or useful during the chronic phase of myeloid leukemia, there may be a rationale for dual kinase inhibitor therapy of more advanced leukemia. Increased activation of Src kinases has been observed in CML patients who have become resistant to Gleevec."

Dr. Li and his team are currently developing additional mouse models lacking in different combinations of the Src kinases, in an effort to make available a range of targeted therapies for this category of cancer.

Collaborating with Dr. Li and members of his laboratory (Dr. Yiguo Hu, Dr. Yuhua Liu and Shawn Pelletier) were Drs. Richard Van Etten (Tufts-New England Medical Center, USA), Elisabeth Buchdunger and Doriano Fabbro (Novartis Pharma AG, Switzerland), Markus Warmuth (Novartis Pharma AG, USA), and Michael Hallek (Universität zu Köln, Germany). The research was supported by grants from the Irving A. Hansen Foundation and The V Foundation for Cancer Research to Shaoguang Li, and the National Institutes of Health and a Leukemia and Lymphoma Society SCOR grant to Richard A. Van Etten.

Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Y. Hu, Y. Liu, S. Pelletier, E. Buchdunger, M. Warmuth, D. Fabbro, M. Hallek, R.A. Van Etten, S. Li. Nature Genetics: vol. 35, no. 5, published online April 18, 2004.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>