Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification Of New Asthma Genes Demonstrates A Model For Improved Patient Care

13.04.2004


An international team of researchers from the University of Helsinki, GeneOS Ltd. and partner institutions announced today that it has made significant discoveries on the causes of asthma. The team’s study, published in the April 9, 2004 edition of Science, reports two novel asthma genes and a set of diagnostic single nucleotide polymorphisms (SNPs).

The implications of the finding are that physicians may be able to identify atopic asthma and allergy patients earlier than is currently possible. Even more importantly, the gene that was found to be the risk gene for asthma is well suited for a drug target molecule.
Previous genome-wide scans in multiple populations have suggested that there is a susceptibility region for asthma on chromosome 7p. This study focused its efforts to confirm the hypothesis and to identify the genes in the Finnish families. The results were then replicated among the Canadian families to be sure that the findings are valid also in other populations. A hierarchical genotyping design was used and lead to the identification of a 133kb risk-conferring segment that contained two genes. The data imply that an orphan G-protein receptor named GPRA is involved in the pathogenesis of atopy and asthma and may have application in other inflammatory diseases.


“The importance of this discovery is that our findings validate our approach of being able to build relevant patient databases and use this information to understand disease outcome”, said Tarja Laitinen, Chief Scientific Officer, GeneOS. “Additionally, these findings are very relevant for our company because they show how we can use information generated in Finland and apply it to other populations. GeneOS is building its capabilities to study disease outcomes in Finland to help pharmaceutical and medical device companies design and run clinical trials and better understand patient response. Findings like the GPRA gene will lead to better diagnosis and treatment.”

“This research is a culmination of ten-year project to identify genes for complex diseases”, said Professor Juha Kere from Karolinska Institutet (Sweden) and University of Helsinki. “Other, similar findings may become reality from comparable efforts, building on the excellent Finnish and Scandinavian medical and population data.”

The number of asthmatics has been growing at about 10 % per year; currently asthma affects approximately 6-10 % of the population in the United States and Western Europe. Asthma accounts for approximately 10 % of all prescription drug spending in the United States and Western Europe. Treatment plans are complex and the ability to measure improved outcome is poor. The ability to study outcomes in Finland and then confirm the findings in other populations will help improve treatment for patients worldwide.

For further information please contact:
Juha Kere, Professor, Helsinki University and Karolinska Institutet, +46 7 3421 3550, juha.kere@biosci.ki.se (about discovery)

Tarja Laitinen, Chief Scientific Officer, GeneOS Ltd., + 358 50 534 6238,tarja.laitinen@geneos.fi (about discovery and GeneOS)

Steve Lehrer, CEO, GeneOS Inc. +1 650 269 3420,
steve@sblehrer.com (about GeneOs)

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>