Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Introduction of the ’Rett protein’ in post-mitotic neurons rescues Rett Syndrome in mice

08.04.2004


Rudolf Jaenisch of the Whitehead Institute of Biomedical Research in Cambridge, MA reports in the April 6, 2004 online issue of the Proceedings of the National Academy of Sciences that introduction of the MeCP2 protein into post-mitotic nerve cells of MeCP2 mutant mice rescues the symptoms of Rett Syndrome. This raises the possibility that neurons are functionally normal in a newborn child and that neural dysfunction manifests itself only later due to prolonged MeCP2 deficiency. If correct, therapeutic strategies aimed at preventing the onset of Rett symptoms could be initiated at birth. This project was funded by the Rett Syndrome Research Foundation (RSRF) and the National Institutes of Health (NIH).



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

In late 1999 it was discovered that mutations in the gene MECP2 were the leading cause of Rett Syndrome. The gene product, MeCP2, is a protein believed to play a vital role in the regulation of gene expression. It is expressed in all organs and found in especially high levels in the brain. The timing of MeCP2 activation coincides with the maturation of the central nervous system and recent reports suggest that MeCP2 may be involved in the formation of contacts between nerve cells and may function in activity-dependent gene expression (i.e. learning). Multiple labs have shown that selective mutation of MeCP2 in nerve cells after birth leads to Rett-like symptoms in mice, suggesting that MeCP2 plays an important role in mature nerve cells.


Dr. Jaenisch devised an experiment to determine the point at which nerve cells become dysfunctional in "Rett mice". Early in embryonic development precursor neuronal cells divide rapidly. As the brain cells mature they stop dividing and become post-mitotic. Dr. Jaenisch hooked the MECP2 gene to the Tau gene which is expressed only in post-mitotic neurons. Mutant Mecp2 mice that also expressed the Tau/Mecp2 transgene never manifested any of the Rett-like symptoms and developed normally.

The experiments also showed that introducing too much MeCP2, 4-6 fold, caused severe motor deficits. This will be an important issue as treatments are developed.

"These experiments lay the groundwork for the next key project: determining whether Rett Syndrome is reversible and if so identifying the appropriate time frame for MeCP2 re-introduction." shared Dr. Jaenisch.

"The announcement by Dr. Jaenisch and his colleagues is an important step towards realizing our mission of accelerating treatments and cures for Rett Syndrome. RSRF has financially supported Dr. Jaenisch’s work since our inception and we are encouraged by the contributions he is making to the field", stated Gordy Rich, Chairman of the RSRF Board of Trustees.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>