Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Introduction of the ’Rett protein’ in post-mitotic neurons rescues Rett Syndrome in mice

08.04.2004


Rudolf Jaenisch of the Whitehead Institute of Biomedical Research in Cambridge, MA reports in the April 6, 2004 online issue of the Proceedings of the National Academy of Sciences that introduction of the MeCP2 protein into post-mitotic nerve cells of MeCP2 mutant mice rescues the symptoms of Rett Syndrome. This raises the possibility that neurons are functionally normal in a newborn child and that neural dysfunction manifests itself only later due to prolonged MeCP2 deficiency. If correct, therapeutic strategies aimed at preventing the onset of Rett symptoms could be initiated at birth. This project was funded by the Rett Syndrome Research Foundation (RSRF) and the National Institutes of Health (NIH).



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

In late 1999 it was discovered that mutations in the gene MECP2 were the leading cause of Rett Syndrome. The gene product, MeCP2, is a protein believed to play a vital role in the regulation of gene expression. It is expressed in all organs and found in especially high levels in the brain. The timing of MeCP2 activation coincides with the maturation of the central nervous system and recent reports suggest that MeCP2 may be involved in the formation of contacts between nerve cells and may function in activity-dependent gene expression (i.e. learning). Multiple labs have shown that selective mutation of MeCP2 in nerve cells after birth leads to Rett-like symptoms in mice, suggesting that MeCP2 plays an important role in mature nerve cells.


Dr. Jaenisch devised an experiment to determine the point at which nerve cells become dysfunctional in "Rett mice". Early in embryonic development precursor neuronal cells divide rapidly. As the brain cells mature they stop dividing and become post-mitotic. Dr. Jaenisch hooked the MECP2 gene to the Tau gene which is expressed only in post-mitotic neurons. Mutant Mecp2 mice that also expressed the Tau/Mecp2 transgene never manifested any of the Rett-like symptoms and developed normally.

The experiments also showed that introducing too much MeCP2, 4-6 fold, caused severe motor deficits. This will be an important issue as treatments are developed.

"These experiments lay the groundwork for the next key project: determining whether Rett Syndrome is reversible and if so identifying the appropriate time frame for MeCP2 re-introduction." shared Dr. Jaenisch.

"The announcement by Dr. Jaenisch and his colleagues is an important step towards realizing our mission of accelerating treatments and cures for Rett Syndrome. RSRF has financially supported Dr. Jaenisch’s work since our inception and we are encouraged by the contributions he is making to the field", stated Gordy Rich, Chairman of the RSRF Board of Trustees.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>