Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic trick adapted from viruses makes gene therapy vectors more versatile

06.04.2004


Gene cassettes using self-cleaving peptides allowed T lymphocytes to construct a key multi-protein immune receptor complex



A genetic trick used by viruses to replicate themselves has been adapted for laboratory use to build complex protein structures required by immune system cells, according to investigators at St. Jude Children’s Research Hospital.

This approach could also be used to develop new gene therapy vectors in cases when cells must be modified to make high levels of different proteins. A vector is a DNA molecule used to ferry specific genes into cells in order to give those cells the ability to make particular proteins.


A report on this work appears in the May 2004 issue of Nature Biotechnology.

The achievement gives researchers a powerful tool for studying the roles of complex proteins in living cells. The study also showed that this technique can reliably produce therapeutically useful amounts of multiple proteins. Some cellular proteins must be present in many copies in order to work efficiently. Because it only borrows a genetic trick from viruses but does not cause a real infection, the technique may increase the usefulness of current gene therapy vectors. Specifically, the technique would permit scientists either to restore complex protein structures that are missing in certain cells or make multiple proteins that act together as potent drugs against cancer and other diseases.

The technique is based on a genetic trick, called a self-cleaving 2A peptide, which is used by some viruses to produce multiple proteins from a single length of DNA; i.e., a single, long protein is produced that automatically breaks into multiple, distinct proteins.

St. Jude researchers used genetically modified mouse immune system cells called T lymphocytes to test the efficiency of this technique in making the CD3 complex, which is part of the T cell receptor, a large protein lodged in the cell’s membrane. The receptor allows T cells to "sense" targets that the cells are programmed to destroy. Without the CD3 complex, the T cell receptor is incomplete and cannot perform its immune function.

The St. Jude researchers used retroviral vectors as the delivery system into which they inserted cassettes (groups of genes) that contained genes for the four CD3 proteins, separated by the 2A peptides. These 2A peptides acted like cleavers to break apart the long protein into the four different, smaller CD3 proteins. The cell used these smaller proteins to build the large TCR:CD3 receptor. In order to replicate inside a cells, the retrovirus RNA must first be changed back into DNA. A retrovirus is a virus whose genetic material is RNA instead of DNA.

The St. Jude team used these multicistronic retroviral vectors (vectors carrying several different genes) to deliver the 2A peptide-linked CD3 gene cassettes into hematopoietic stem cells from mice that lacked the CD3 proteins, and thus could not make T cells. These genetically modified stem cells subsequently developed and restored T cell development in the mice. Hematopoietic stem cells are "parent" cells that give rise to all the red and white cells found in blood.

"These 2A peptides will allow us, and others, to generate single vectors that can efficiently and reliably express multiple proteins in the exact amounts needed to permit the cell to assemble complex structures," said Dario A. A. Vignali, Ph.D., associate member of the St. Jude Department of Immunology and a faculty member at the University of Tennessee Medical Center. Vignali is senior author of the Nature Biotechnology report.

"We expect that this technique will make it a lot easier for us to study the role of complex protein structures," Vignali said. "These 2A peptides may also facilitate the development of more versatile gene therapy vectors for treatments that require replacement or expression of more than a single gene."

Other authors of this study are Andrea L. Szymczak (St. Jude and University of Tennessee), Creg J. Workman, Yao Wang, Kate M. Vignali, Smaroula Dilioglou (St. Jude) and Elio F. Vanin (currenly Baylor College of Medicine.)


This work was supported in part by NIH, a Cancer Center Support (CORE) grant and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>