Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic trick adapted from viruses makes gene therapy vectors more versatile


Gene cassettes using self-cleaving peptides allowed T lymphocytes to construct a key multi-protein immune receptor complex

A genetic trick used by viruses to replicate themselves has been adapted for laboratory use to build complex protein structures required by immune system cells, according to investigators at St. Jude Children’s Research Hospital.

This approach could also be used to develop new gene therapy vectors in cases when cells must be modified to make high levels of different proteins. A vector is a DNA molecule used to ferry specific genes into cells in order to give those cells the ability to make particular proteins.

A report on this work appears in the May 2004 issue of Nature Biotechnology.

The achievement gives researchers a powerful tool for studying the roles of complex proteins in living cells. The study also showed that this technique can reliably produce therapeutically useful amounts of multiple proteins. Some cellular proteins must be present in many copies in order to work efficiently. Because it only borrows a genetic trick from viruses but does not cause a real infection, the technique may increase the usefulness of current gene therapy vectors. Specifically, the technique would permit scientists either to restore complex protein structures that are missing in certain cells or make multiple proteins that act together as potent drugs against cancer and other diseases.

The technique is based on a genetic trick, called a self-cleaving 2A peptide, which is used by some viruses to produce multiple proteins from a single length of DNA; i.e., a single, long protein is produced that automatically breaks into multiple, distinct proteins.

St. Jude researchers used genetically modified mouse immune system cells called T lymphocytes to test the efficiency of this technique in making the CD3 complex, which is part of the T cell receptor, a large protein lodged in the cell’s membrane. The receptor allows T cells to "sense" targets that the cells are programmed to destroy. Without the CD3 complex, the T cell receptor is incomplete and cannot perform its immune function.

The St. Jude researchers used retroviral vectors as the delivery system into which they inserted cassettes (groups of genes) that contained genes for the four CD3 proteins, separated by the 2A peptides. These 2A peptides acted like cleavers to break apart the long protein into the four different, smaller CD3 proteins. The cell used these smaller proteins to build the large TCR:CD3 receptor. In order to replicate inside a cells, the retrovirus RNA must first be changed back into DNA. A retrovirus is a virus whose genetic material is RNA instead of DNA.

The St. Jude team used these multicistronic retroviral vectors (vectors carrying several different genes) to deliver the 2A peptide-linked CD3 gene cassettes into hematopoietic stem cells from mice that lacked the CD3 proteins, and thus could not make T cells. These genetically modified stem cells subsequently developed and restored T cell development in the mice. Hematopoietic stem cells are "parent" cells that give rise to all the red and white cells found in blood.

"These 2A peptides will allow us, and others, to generate single vectors that can efficiently and reliably express multiple proteins in the exact amounts needed to permit the cell to assemble complex structures," said Dario A. A. Vignali, Ph.D., associate member of the St. Jude Department of Immunology and a faculty member at the University of Tennessee Medical Center. Vignali is senior author of the Nature Biotechnology report.

"We expect that this technique will make it a lot easier for us to study the role of complex protein structures," Vignali said. "These 2A peptides may also facilitate the development of more versatile gene therapy vectors for treatments that require replacement or expression of more than a single gene."

Other authors of this study are Andrea L. Szymczak (St. Jude and University of Tennessee), Creg J. Workman, Yao Wang, Kate M. Vignali, Smaroula Dilioglou (St. Jude) and Elio F. Vanin (currenly Baylor College of Medicine.)

This work was supported in part by NIH, a Cancer Center Support (CORE) grant and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit

Bonnie Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>