Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic trick adapted from viruses makes gene therapy vectors more versatile

06.04.2004


Gene cassettes using self-cleaving peptides allowed T lymphocytes to construct a key multi-protein immune receptor complex



A genetic trick used by viruses to replicate themselves has been adapted for laboratory use to build complex protein structures required by immune system cells, according to investigators at St. Jude Children’s Research Hospital.

This approach could also be used to develop new gene therapy vectors in cases when cells must be modified to make high levels of different proteins. A vector is a DNA molecule used to ferry specific genes into cells in order to give those cells the ability to make particular proteins.


A report on this work appears in the May 2004 issue of Nature Biotechnology.

The achievement gives researchers a powerful tool for studying the roles of complex proteins in living cells. The study also showed that this technique can reliably produce therapeutically useful amounts of multiple proteins. Some cellular proteins must be present in many copies in order to work efficiently. Because it only borrows a genetic trick from viruses but does not cause a real infection, the technique may increase the usefulness of current gene therapy vectors. Specifically, the technique would permit scientists either to restore complex protein structures that are missing in certain cells or make multiple proteins that act together as potent drugs against cancer and other diseases.

The technique is based on a genetic trick, called a self-cleaving 2A peptide, which is used by some viruses to produce multiple proteins from a single length of DNA; i.e., a single, long protein is produced that automatically breaks into multiple, distinct proteins.

St. Jude researchers used genetically modified mouse immune system cells called T lymphocytes to test the efficiency of this technique in making the CD3 complex, which is part of the T cell receptor, a large protein lodged in the cell’s membrane. The receptor allows T cells to "sense" targets that the cells are programmed to destroy. Without the CD3 complex, the T cell receptor is incomplete and cannot perform its immune function.

The St. Jude researchers used retroviral vectors as the delivery system into which they inserted cassettes (groups of genes) that contained genes for the four CD3 proteins, separated by the 2A peptides. These 2A peptides acted like cleavers to break apart the long protein into the four different, smaller CD3 proteins. The cell used these smaller proteins to build the large TCR:CD3 receptor. In order to replicate inside a cells, the retrovirus RNA must first be changed back into DNA. A retrovirus is a virus whose genetic material is RNA instead of DNA.

The St. Jude team used these multicistronic retroviral vectors (vectors carrying several different genes) to deliver the 2A peptide-linked CD3 gene cassettes into hematopoietic stem cells from mice that lacked the CD3 proteins, and thus could not make T cells. These genetically modified stem cells subsequently developed and restored T cell development in the mice. Hematopoietic stem cells are "parent" cells that give rise to all the red and white cells found in blood.

"These 2A peptides will allow us, and others, to generate single vectors that can efficiently and reliably express multiple proteins in the exact amounts needed to permit the cell to assemble complex structures," said Dario A. A. Vignali, Ph.D., associate member of the St. Jude Department of Immunology and a faculty member at the University of Tennessee Medical Center. Vignali is senior author of the Nature Biotechnology report.

"We expect that this technique will make it a lot easier for us to study the role of complex protein structures," Vignali said. "These 2A peptides may also facilitate the development of more versatile gene therapy vectors for treatments that require replacement or expression of more than a single gene."

Other authors of this study are Andrea L. Szymczak (St. Jude and University of Tennessee), Creg J. Workman, Yao Wang, Kate M. Vignali, Smaroula Dilioglou (St. Jude) and Elio F. Vanin (currenly Baylor College of Medicine.)


This work was supported in part by NIH, a Cancer Center Support (CORE) grant and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>