Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular midwives hold clues to the origin of life

01.04.2004


Adding a small molecule, dubbed a "molecular midwife," researchers increased the rate of DNA formation in a chemical reaction 1,000 fold over a similar reaction lacking a midwife. The discovery is an important step in the effort to trace the evolution of life back to the earliest self-replicating molecules. The results are reported in the April 2 edition of the German chemistry journal Angewandte Chemie.



"We are working to uncover how molecules similar to RNA and DNA first appeared on Earth around 4 billion years ago. Our theory is that small, simple molecules acted as templates for the production of the first RNA-like molecules. Many of these small molecules, or molecular midwives, would have worked together to produce RNA by spontaneously mixing and assembling with the chemical building blocks of RNA," said Nicholas Hud, associate professor of chemistry and biochemistry at the Georgia Institute of Technology.

In contemporary life, RNA is present in all cells and is responsible for transmitting genetic information from DNA to proteins. Many scientists believe that RNA, or something similar to RNA, was the first molecule on Earth to self-replicate and begin the process of evolution that led to more advanced forms of life such as human beings.


Hud first proposed the idea of a molecular midwife in a paper published in the Journal of Theoretical Biology in 2000, along with co-author Frank Anet, professor emeritus at UCLA. The problem they said was this. When you throw all the components needed to make RNA into a soup, the individual components do not spontaneously form RNA. But there may have been other molecules present at the dawn of life that would have increased the chances RNA would form. If this were true, then it would provide a missing link in the evolution of life’s earliest molecules.

Hud and Anet, along with Georgia Tech students Swapan Jain and Christopher Stahle, tested this idea by using the molecule proflavin to aid the chemical synthesis of DNA (DNA is chemically very similar to RNA and its synthetic reagents were more readily adapted for their test reaction). They found that proflavin accelerates by 1,000 times the rate at which two short DNA molecules become connected into a larger DNA molecule.

"At first, we simply wanted to determine if our idea for the role of a molecular midwife in early life was at all feasible. We used proflavin as a test midwife because it is known to bind in between the base pairs of RNA and DNA, a feature that we believed to be important for midwife activity. Now we are testing other molecules for midwife activity, and attempting to determine which ones could have been present on Earth at the time when life began," said Hud.

Solving the puzzle of how the first RNA molecules formed is crucial for scientists who want to trace the evolution of life to its origins. In today’s world, DNA, RNA and proteins are all involved in replicating each other. Cells use proteins to replicate DNA and RNA; in turn, RNA is needed to make proteins.

In the early 1980s it was discovered that RNA is capable of both carrying the genetic information needed to make a new molecule and catalyzing chemical reactions; the latter task is currently done primarily by proteins in living cells. So if RNA can do both its own job and that of proteins, then proteins didn’t need to be present for the first RNA molecules to form and replicate. Given that DNA requires one more step to make than RNA, many scientists concluded that RNA was the first molecule of life on earth.

So if RNA came first, how did it get here? Hud’s theory is this. Much like a ladder with one side lopped off, RNA is made up of a long chain of sugars and phosphate groups - known as a polymer backbone - forming one side of the ladder and with four different types of molecules - known as bases - forming the rungs. In the beginning, individual bases may have been connected to sugars and phosphate groups to form molecules called nucleotides. It’s well known that left to their own devices, the bases of nucleotides won’t bond with each other with any great frequency, as they do in the well-known double helix of DNA. But if, Hud and company propose, a molecular midwife such as proflavin were present, it would create a platform on which two bases could stack and pair with each other. As pairs of nucleotide bases stack with interspersed midwives, in a Dagwood-style sandwich, the nucleotides can stitch together to form molecules such as RNA or DNA. Once these molecules are long enough, the midwives can float away and the bases would remain paired in a double helix, or separate to promote the formation of more RNA molecules, depending upon solution conditions.

"Most recently we have demonstrated in our laboratory that proflavin can also work as a molecular midwife for RNA formation, as well as DNA," said Hud. "We are very excited about these results. However, our ultimate goal is to achieve a self-replicating molecular system that is capable of evolving." That development, he added, is still several years away.

David Terraso | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>