Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack genome sequence of a major parasitic pathogen

26.03.2004


Global health threat Cryptosporidium parvum affects humans and animals



University of Minnesota researchers have completed sequencing the genome of an intestinal parasite that affects healthy humans and animals and that can be fatal to those with compromised immune systems, such as AIDS patients. The results will be published in the journal Science on March 25.

The parasite, Cryptosporidium parvum, is considered a major public health threat for which there is currently no known treatment or prevention. The gene sequencing will allow researchers to develop new ways of early diagnosis, prevention, and treatment of this parasite.


"This is a horrible, hard to treat condition, largely because we lack a basic understanding of the genetic makeup of the organism," said Mitchell Abrahamsen, Ph.D., principal investigator, and faculty member of the University of Minnesota College Veterinary Medicine. "In fact, since analyzing the complete genome sequence, we now realize that many of the conventional antiparasitic drugs that have been used in an attempt to treat infected individuals have failed because the biochemical targets of the drugs are absent in C. parvum."

Cryptosporidum is spread through feces of infected hosts and results in an acute case of diarrhea in humans and animals. Most people with an intact immune system recover after several days; however, for the young, elderly, and immunosuppressed individuals, symptoms can be severe and require intravenous fluid therapy to deal with the resulting dehydration.

Infection by Cryptosporidium is also one of the major causes of neonatal diarrhea in calves, contributing to significant economic loss in the dairy and beef cattle industries. In 1992, a USDA study revealed that more than 80 percent of farms surveyed were positive for Cryptosporidium.

Despite intensive efforts over the past 20 years, public health authorities have found prevention difficult. The parasite is highly resistant to environmental stresses, including chlorine treatment of community water supplies. As a result, the parasite is a significant water- and food-borne pathogen. In recent years, there have been major outbreaks of C. parvum in Milwaukee, Wis., and the Minnesota Zoo in Apple Valley.

"The genome sequence sheds new light on the genes and biochemical pathways in the parasite, and the research offers a starting point for defining the mechanisms by which the organism causes disease, and helps devise new strategies to detect, prevent, and treat C. parvum infection in humans and animals," said Vivek Kapur, BVSc, Ph.D., co-principal investigator, faculty member of the University of Minnesota Medical School and College of Veterinary Medicine, and director of the university’s Biomedical Genomics Center and Advanced Genetic Analysis Center, where the genome sequencing was carried out.

During the sequencing project, scientists discovered several genes and unknown biochemical pathways with great similarities to bacterial and plant counterparts. "These biochemical pathways are very different from those present in humans and will provide new targets for designing effective and safe drugs against C. parvum that should have little activity or toxicity for humans," said Abrahamsen.

The sequencing project represents part of an ambitious University of Minnesota "microbial pathogenomics" research program to sequence the genomes of a wide range of human and animal pathogens. This information then can be used to understand the mechanisms by which these pathogens cause disease.

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>