Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack genome sequence of a major parasitic pathogen

26.03.2004


Global health threat Cryptosporidium parvum affects humans and animals



University of Minnesota researchers have completed sequencing the genome of an intestinal parasite that affects healthy humans and animals and that can be fatal to those with compromised immune systems, such as AIDS patients. The results will be published in the journal Science on March 25.

The parasite, Cryptosporidium parvum, is considered a major public health threat for which there is currently no known treatment or prevention. The gene sequencing will allow researchers to develop new ways of early diagnosis, prevention, and treatment of this parasite.


"This is a horrible, hard to treat condition, largely because we lack a basic understanding of the genetic makeup of the organism," said Mitchell Abrahamsen, Ph.D., principal investigator, and faculty member of the University of Minnesota College Veterinary Medicine. "In fact, since analyzing the complete genome sequence, we now realize that many of the conventional antiparasitic drugs that have been used in an attempt to treat infected individuals have failed because the biochemical targets of the drugs are absent in C. parvum."

Cryptosporidum is spread through feces of infected hosts and results in an acute case of diarrhea in humans and animals. Most people with an intact immune system recover after several days; however, for the young, elderly, and immunosuppressed individuals, symptoms can be severe and require intravenous fluid therapy to deal with the resulting dehydration.

Infection by Cryptosporidium is also one of the major causes of neonatal diarrhea in calves, contributing to significant economic loss in the dairy and beef cattle industries. In 1992, a USDA study revealed that more than 80 percent of farms surveyed were positive for Cryptosporidium.

Despite intensive efforts over the past 20 years, public health authorities have found prevention difficult. The parasite is highly resistant to environmental stresses, including chlorine treatment of community water supplies. As a result, the parasite is a significant water- and food-borne pathogen. In recent years, there have been major outbreaks of C. parvum in Milwaukee, Wis., and the Minnesota Zoo in Apple Valley.

"The genome sequence sheds new light on the genes and biochemical pathways in the parasite, and the research offers a starting point for defining the mechanisms by which the organism causes disease, and helps devise new strategies to detect, prevent, and treat C. parvum infection in humans and animals," said Vivek Kapur, BVSc, Ph.D., co-principal investigator, faculty member of the University of Minnesota Medical School and College of Veterinary Medicine, and director of the university’s Biomedical Genomics Center and Advanced Genetic Analysis Center, where the genome sequencing was carried out.

During the sequencing project, scientists discovered several genes and unknown biochemical pathways with great similarities to bacterial and plant counterparts. "These biochemical pathways are very different from those present in humans and will provide new targets for designing effective and safe drugs against C. parvum that should have little activity or toxicity for humans," said Abrahamsen.

The sequencing project represents part of an ambitious University of Minnesota "microbial pathogenomics" research program to sequence the genomes of a wide range of human and animal pathogens. This information then can be used to understand the mechanisms by which these pathogens cause disease.

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>