Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack genome sequence of a major parasitic pathogen

26.03.2004


Global health threat Cryptosporidium parvum affects humans and animals



University of Minnesota researchers have completed sequencing the genome of an intestinal parasite that affects healthy humans and animals and that can be fatal to those with compromised immune systems, such as AIDS patients. The results will be published in the journal Science on March 25.

The parasite, Cryptosporidium parvum, is considered a major public health threat for which there is currently no known treatment or prevention. The gene sequencing will allow researchers to develop new ways of early diagnosis, prevention, and treatment of this parasite.


"This is a horrible, hard to treat condition, largely because we lack a basic understanding of the genetic makeup of the organism," said Mitchell Abrahamsen, Ph.D., principal investigator, and faculty member of the University of Minnesota College Veterinary Medicine. "In fact, since analyzing the complete genome sequence, we now realize that many of the conventional antiparasitic drugs that have been used in an attempt to treat infected individuals have failed because the biochemical targets of the drugs are absent in C. parvum."

Cryptosporidum is spread through feces of infected hosts and results in an acute case of diarrhea in humans and animals. Most people with an intact immune system recover after several days; however, for the young, elderly, and immunosuppressed individuals, symptoms can be severe and require intravenous fluid therapy to deal with the resulting dehydration.

Infection by Cryptosporidium is also one of the major causes of neonatal diarrhea in calves, contributing to significant economic loss in the dairy and beef cattle industries. In 1992, a USDA study revealed that more than 80 percent of farms surveyed were positive for Cryptosporidium.

Despite intensive efforts over the past 20 years, public health authorities have found prevention difficult. The parasite is highly resistant to environmental stresses, including chlorine treatment of community water supplies. As a result, the parasite is a significant water- and food-borne pathogen. In recent years, there have been major outbreaks of C. parvum in Milwaukee, Wis., and the Minnesota Zoo in Apple Valley.

"The genome sequence sheds new light on the genes and biochemical pathways in the parasite, and the research offers a starting point for defining the mechanisms by which the organism causes disease, and helps devise new strategies to detect, prevent, and treat C. parvum infection in humans and animals," said Vivek Kapur, BVSc, Ph.D., co-principal investigator, faculty member of the University of Minnesota Medical School and College of Veterinary Medicine, and director of the university’s Biomedical Genomics Center and Advanced Genetic Analysis Center, where the genome sequencing was carried out.

During the sequencing project, scientists discovered several genes and unknown biochemical pathways with great similarities to bacterial and plant counterparts. "These biochemical pathways are very different from those present in humans and will provide new targets for designing effective and safe drugs against C. parvum that should have little activity or toxicity for humans," said Abrahamsen.

The sequencing project represents part of an ambitious University of Minnesota "microbial pathogenomics" research program to sequence the genomes of a wide range of human and animal pathogens. This information then can be used to understand the mechanisms by which these pathogens cause disease.

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>