Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There be dragons: New deep-sea predator species discovered

24.03.2004


Eustomias jimcraddocki
Credit: HARBOR BRANCH/T. Sutton


Dr. Tracey Sutton, a fish ecologist at the HARBOR BRANCH Oceanographic Institution in Ft. Pierce, Fla., has discovered a new species in a bizarre and elusive family of deep-sea predatory fish known collectively as dragonfish. The find, reported in the current issue of the journal Copeia, is the first new dragonfish species discovered in more than a decade.

The first specimen of the new species, dubbed Eustomias jimcraddocki, was large, compared to the average pencil-sized dragonfish at about six inches long and roughly the size of a hot dog. Sutton named it after Jim Craddock, a legend in the deep-sea fish biology field.

Sutton discovered the fish during an expedition to Bear Seamount, off New England, that was sponsored by the National Oceanic and Atmospheric Administration’s Office of Ocean Exploration. Now the head of HARBOR BRANCH’s Fish and Plankton Ecology Department, he was at the time a Postdoctoral Scholar at the Woods Hole Oceanographic Institution in Massachusetts.



"The fact that we are still finding new species in one of the best-studied oceanic regions in the world tells us there is still a lot more out there to be known," says Sutton, who is also a leader in the ambitious international effort to identify all ocean animal and plant species known as the Census of Marine Life.

Sutton plucked the new dragonfish from a net being used to sample the study area’s marine life. While identifying the catch on board, he realized that the specimen represented a new species. Later he traveled to the Smithsonian Institution and Harvard to do some fish sleuthing. In museum collections at those institutions, he found 13 additional specimens collected in the Atlantic over the past 30 years that had previously been either unidentified or misidentified. This work verified that the new species was in fact unique.

Dragonfish are so rare that scientists have often been forced to study and describe new species based on a single specimen. "I really wanted more than just one fish," says Sutton, "so I was relieved to find more."

As with all dragonfish, which live at depths ranging from about 600 to 3,000 feet, the new species has menacing teeth, and a mouth that can jut out to engulf prey as wide as it is. They also have small organs along their bellies that produce light, or bioluminescence, and that may serve as camouflage to make the fish blend in with faint sunlight from above, thus appearing invisible to potential predators below.

The distinguishing feature of dragonfishes is a long thin protrusion known as a barbel anchored at the fish’s chin that trails below its body. The barbels look like tree branches, and each species has a unique barbel pattern. At the end of the barbel is a bioluminescent organ the animals use like a fishing lure to attract prey, mainly lanternfish. If the barbels served only this function, scientists would expect all dragonfishes to have similar barbels. However, because the protrusions are so varied, some theorize the fish may also use them to identify other members of their own species for reproduction.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>