Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There be dragons: New deep-sea predator species discovered

24.03.2004


Eustomias jimcraddocki
Credit: HARBOR BRANCH/T. Sutton


Dr. Tracey Sutton, a fish ecologist at the HARBOR BRANCH Oceanographic Institution in Ft. Pierce, Fla., has discovered a new species in a bizarre and elusive family of deep-sea predatory fish known collectively as dragonfish. The find, reported in the current issue of the journal Copeia, is the first new dragonfish species discovered in more than a decade.

The first specimen of the new species, dubbed Eustomias jimcraddocki, was large, compared to the average pencil-sized dragonfish at about six inches long and roughly the size of a hot dog. Sutton named it after Jim Craddock, a legend in the deep-sea fish biology field.

Sutton discovered the fish during an expedition to Bear Seamount, off New England, that was sponsored by the National Oceanic and Atmospheric Administration’s Office of Ocean Exploration. Now the head of HARBOR BRANCH’s Fish and Plankton Ecology Department, he was at the time a Postdoctoral Scholar at the Woods Hole Oceanographic Institution in Massachusetts.



"The fact that we are still finding new species in one of the best-studied oceanic regions in the world tells us there is still a lot more out there to be known," says Sutton, who is also a leader in the ambitious international effort to identify all ocean animal and plant species known as the Census of Marine Life.

Sutton plucked the new dragonfish from a net being used to sample the study area’s marine life. While identifying the catch on board, he realized that the specimen represented a new species. Later he traveled to the Smithsonian Institution and Harvard to do some fish sleuthing. In museum collections at those institutions, he found 13 additional specimens collected in the Atlantic over the past 30 years that had previously been either unidentified or misidentified. This work verified that the new species was in fact unique.

Dragonfish are so rare that scientists have often been forced to study and describe new species based on a single specimen. "I really wanted more than just one fish," says Sutton, "so I was relieved to find more."

As with all dragonfish, which live at depths ranging from about 600 to 3,000 feet, the new species has menacing teeth, and a mouth that can jut out to engulf prey as wide as it is. They also have small organs along their bellies that produce light, or bioluminescence, and that may serve as camouflage to make the fish blend in with faint sunlight from above, thus appearing invisible to potential predators below.

The distinguishing feature of dragonfishes is a long thin protrusion known as a barbel anchored at the fish’s chin that trails below its body. The barbels look like tree branches, and each species has a unique barbel pattern. At the end of the barbel is a bioluminescent organ the animals use like a fishing lure to attract prey, mainly lanternfish. If the barbels served only this function, scientists would expect all dragonfishes to have similar barbels. However, because the protrusions are so varied, some theorize the fish may also use them to identify other members of their own species for reproduction.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>