Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step towards building tiny, molecular motors

22.03.2004


Achieved by Hebrew University, UCLA scientists


Illustration shows how the “molecular motor” is composed of a molecule made up of two spheres, rotating on a common axis between them. In the double-sphered molecule at right, two carbon atoms (grey) are shown on the left-hand side of both spheres of the molecule. In the molecule at left, the upper sphere of the molecule has rotated counter-clockwise by 144 degrees and locked in position, the result being that the carbon atoms can now be seen in the top sphere on the right-hand side. The other atoms in the illustration are nickel (blue) and hydrogen (pink). The straight bars connecting the atoms represent chemical bonds



A step towards building tiny motors on the scale of a molecule has been demonstrated by researchers at the Hebrew University of Jerusalem and the University of California at Los Angeles (UCLA).

In an article appearing in the current issue of Science magazine, the researchers from the two institutions described how they were able – through light or electrical stimulation – to cause a molecule to rotate on an axis in a controlled fashion, similar to the action of a motor.


The consequences of such an achievement could lead to the design of molecular devices on a “nano” scale (one billionth of a meter), capable of operating industrial or surgical processes that larger equipment could not handle.

The researchers who wrote the article for Science are Prof. Roi Baer of the Institute of Chemistry at the Hebrew University of Jerusalem, along with his graduate student, Esther Livshits, and Prof. Daniel Neuhauser, Prof. M. Frederick Hawthorne, Dr. Jeffrey I. Zink, Johnny M. Skelton, Dr. Michael J. Bayer and Chris Liu of the University of California at Los Angeles.

Prof. Baer explained that tiny “machines” already exist in natural biological systems. For example, certain bacteria are equipped with a small molecular motor that rotates a flagellum and allows the bacteria to move and navigate in water. The “fuel:” driving these motors is energy-rich molecules, abundant in the living cell, that are programmed to release their stored energy.

The challenge for scientists is to design man-made molecular motors – not necessarily confined to living cells -- that can be controlled and powered using light or electricity. Such man-made motoric actions have been achieved in the past, but the Hebrew University-UCLA team says it is the first to achieve motion that can be halted. This is important because in order for a tiny molecular motor to have any practicality, it must be capable of being stopped or locked in position. This would enable molecular devices to be used, for example, as tiny switches or to perform other mechanical tasks.

Molecular machines are still a long way down the road, said Prof. Baer. But it is clear that once such a technology is available, it will be possible to design new materials and control their properties with extremely high precision. It will also be possible to manipulate and intervene in the most delicate processes in the living cell – with at present unimaginable benefits for medical experimentation and ultimately treatment.

The molecule used by the researchers was composed of four elements – boron, carbon, nickel and hydrogen. The nickel was the key to the process, since it is capable of bonding in several ways in molecules.

The model developed is composed of two spherical structures with a common axis. When exposed to light or electrical stimulation, the top sphere rotates with respect to the bottom one by an angle of 144 degrees. After this rotation, the molecule is locked into its new position.

By measuring the absorption, emission and scattering of light from the molecule and using detailed theoretical calculations, the researchers were able to study the intricate mechanism of the molecule’s operation. They are now trying to find a way of chemically bonding one of the spheres of the molecule to a surface and attaching a molecular chain to the other sphere, capable of performing a rotary task on demand (a kind of mini-motor). Further, by attaching two molecules together along their axes, say the scientists, rotations other than 144 degrees could be achieved.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il/huji/eng/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>