Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step towards building tiny, molecular motors

22.03.2004


Achieved by Hebrew University, UCLA scientists


Illustration shows how the “molecular motor” is composed of a molecule made up of two spheres, rotating on a common axis between them. In the double-sphered molecule at right, two carbon atoms (grey) are shown on the left-hand side of both spheres of the molecule. In the molecule at left, the upper sphere of the molecule has rotated counter-clockwise by 144 degrees and locked in position, the result being that the carbon atoms can now be seen in the top sphere on the right-hand side. The other atoms in the illustration are nickel (blue) and hydrogen (pink). The straight bars connecting the atoms represent chemical bonds



A step towards building tiny motors on the scale of a molecule has been demonstrated by researchers at the Hebrew University of Jerusalem and the University of California at Los Angeles (UCLA).

In an article appearing in the current issue of Science magazine, the researchers from the two institutions described how they were able – through light or electrical stimulation – to cause a molecule to rotate on an axis in a controlled fashion, similar to the action of a motor.


The consequences of such an achievement could lead to the design of molecular devices on a “nano” scale (one billionth of a meter), capable of operating industrial or surgical processes that larger equipment could not handle.

The researchers who wrote the article for Science are Prof. Roi Baer of the Institute of Chemistry at the Hebrew University of Jerusalem, along with his graduate student, Esther Livshits, and Prof. Daniel Neuhauser, Prof. M. Frederick Hawthorne, Dr. Jeffrey I. Zink, Johnny M. Skelton, Dr. Michael J. Bayer and Chris Liu of the University of California at Los Angeles.

Prof. Baer explained that tiny “machines” already exist in natural biological systems. For example, certain bacteria are equipped with a small molecular motor that rotates a flagellum and allows the bacteria to move and navigate in water. The “fuel:” driving these motors is energy-rich molecules, abundant in the living cell, that are programmed to release their stored energy.

The challenge for scientists is to design man-made molecular motors – not necessarily confined to living cells -- that can be controlled and powered using light or electricity. Such man-made motoric actions have been achieved in the past, but the Hebrew University-UCLA team says it is the first to achieve motion that can be halted. This is important because in order for a tiny molecular motor to have any practicality, it must be capable of being stopped or locked in position. This would enable molecular devices to be used, for example, as tiny switches or to perform other mechanical tasks.

Molecular machines are still a long way down the road, said Prof. Baer. But it is clear that once such a technology is available, it will be possible to design new materials and control their properties with extremely high precision. It will also be possible to manipulate and intervene in the most delicate processes in the living cell – with at present unimaginable benefits for medical experimentation and ultimately treatment.

The molecule used by the researchers was composed of four elements – boron, carbon, nickel and hydrogen. The nickel was the key to the process, since it is capable of bonding in several ways in molecules.

The model developed is composed of two spherical structures with a common axis. When exposed to light or electrical stimulation, the top sphere rotates with respect to the bottom one by an angle of 144 degrees. After this rotation, the molecule is locked into its new position.

By measuring the absorption, emission and scattering of light from the molecule and using detailed theoretical calculations, the researchers were able to study the intricate mechanism of the molecule’s operation. They are now trying to find a way of chemically bonding one of the spheres of the molecule to a surface and attaching a molecular chain to the other sphere, capable of performing a rotary task on demand (a kind of mini-motor). Further, by attaching two molecules together along their axes, say the scientists, rotations other than 144 degrees could be achieved.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il/huji/eng/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>