Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step towards building tiny, molecular motors

22.03.2004


Achieved by Hebrew University, UCLA scientists


Illustration shows how the “molecular motor” is composed of a molecule made up of two spheres, rotating on a common axis between them. In the double-sphered molecule at right, two carbon atoms (grey) are shown on the left-hand side of both spheres of the molecule. In the molecule at left, the upper sphere of the molecule has rotated counter-clockwise by 144 degrees and locked in position, the result being that the carbon atoms can now be seen in the top sphere on the right-hand side. The other atoms in the illustration are nickel (blue) and hydrogen (pink). The straight bars connecting the atoms represent chemical bonds



A step towards building tiny motors on the scale of a molecule has been demonstrated by researchers at the Hebrew University of Jerusalem and the University of California at Los Angeles (UCLA).

In an article appearing in the current issue of Science magazine, the researchers from the two institutions described how they were able – through light or electrical stimulation – to cause a molecule to rotate on an axis in a controlled fashion, similar to the action of a motor.


The consequences of such an achievement could lead to the design of molecular devices on a “nano” scale (one billionth of a meter), capable of operating industrial or surgical processes that larger equipment could not handle.

The researchers who wrote the article for Science are Prof. Roi Baer of the Institute of Chemistry at the Hebrew University of Jerusalem, along with his graduate student, Esther Livshits, and Prof. Daniel Neuhauser, Prof. M. Frederick Hawthorne, Dr. Jeffrey I. Zink, Johnny M. Skelton, Dr. Michael J. Bayer and Chris Liu of the University of California at Los Angeles.

Prof. Baer explained that tiny “machines” already exist in natural biological systems. For example, certain bacteria are equipped with a small molecular motor that rotates a flagellum and allows the bacteria to move and navigate in water. The “fuel:” driving these motors is energy-rich molecules, abundant in the living cell, that are programmed to release their stored energy.

The challenge for scientists is to design man-made molecular motors – not necessarily confined to living cells -- that can be controlled and powered using light or electricity. Such man-made motoric actions have been achieved in the past, but the Hebrew University-UCLA team says it is the first to achieve motion that can be halted. This is important because in order for a tiny molecular motor to have any practicality, it must be capable of being stopped or locked in position. This would enable molecular devices to be used, for example, as tiny switches or to perform other mechanical tasks.

Molecular machines are still a long way down the road, said Prof. Baer. But it is clear that once such a technology is available, it will be possible to design new materials and control their properties with extremely high precision. It will also be possible to manipulate and intervene in the most delicate processes in the living cell – with at present unimaginable benefits for medical experimentation and ultimately treatment.

The molecule used by the researchers was composed of four elements – boron, carbon, nickel and hydrogen. The nickel was the key to the process, since it is capable of bonding in several ways in molecules.

The model developed is composed of two spherical structures with a common axis. When exposed to light or electrical stimulation, the top sphere rotates with respect to the bottom one by an angle of 144 degrees. After this rotation, the molecule is locked into its new position.

By measuring the absorption, emission and scattering of light from the molecule and using detailed theoretical calculations, the researchers were able to study the intricate mechanism of the molecule’s operation. They are now trying to find a way of chemically bonding one of the spheres of the molecule to a surface and attaching a molecular chain to the other sphere, capable of performing a rotary task on demand (a kind of mini-motor). Further, by attaching two molecules together along their axes, say the scientists, rotations other than 144 degrees could be achieved.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il/huji/eng/

More articles from Life Sciences:

nachricht About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed
10.02.2016 | Universität Ulm

nachricht Chemical cages: New technique advances synthetic biology
10.02.2016 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>