Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step towards building tiny, molecular motors

22.03.2004


Achieved by Hebrew University, UCLA scientists


Illustration shows how the “molecular motor” is composed of a molecule made up of two spheres, rotating on a common axis between them. In the double-sphered molecule at right, two carbon atoms (grey) are shown on the left-hand side of both spheres of the molecule. In the molecule at left, the upper sphere of the molecule has rotated counter-clockwise by 144 degrees and locked in position, the result being that the carbon atoms can now be seen in the top sphere on the right-hand side. The other atoms in the illustration are nickel (blue) and hydrogen (pink). The straight bars connecting the atoms represent chemical bonds



A step towards building tiny motors on the scale of a molecule has been demonstrated by researchers at the Hebrew University of Jerusalem and the University of California at Los Angeles (UCLA).

In an article appearing in the current issue of Science magazine, the researchers from the two institutions described how they were able – through light or electrical stimulation – to cause a molecule to rotate on an axis in a controlled fashion, similar to the action of a motor.


The consequences of such an achievement could lead to the design of molecular devices on a “nano” scale (one billionth of a meter), capable of operating industrial or surgical processes that larger equipment could not handle.

The researchers who wrote the article for Science are Prof. Roi Baer of the Institute of Chemistry at the Hebrew University of Jerusalem, along with his graduate student, Esther Livshits, and Prof. Daniel Neuhauser, Prof. M. Frederick Hawthorne, Dr. Jeffrey I. Zink, Johnny M. Skelton, Dr. Michael J. Bayer and Chris Liu of the University of California at Los Angeles.

Prof. Baer explained that tiny “machines” already exist in natural biological systems. For example, certain bacteria are equipped with a small molecular motor that rotates a flagellum and allows the bacteria to move and navigate in water. The “fuel:” driving these motors is energy-rich molecules, abundant in the living cell, that are programmed to release their stored energy.

The challenge for scientists is to design man-made molecular motors – not necessarily confined to living cells -- that can be controlled and powered using light or electricity. Such man-made motoric actions have been achieved in the past, but the Hebrew University-UCLA team says it is the first to achieve motion that can be halted. This is important because in order for a tiny molecular motor to have any practicality, it must be capable of being stopped or locked in position. This would enable molecular devices to be used, for example, as tiny switches or to perform other mechanical tasks.

Molecular machines are still a long way down the road, said Prof. Baer. But it is clear that once such a technology is available, it will be possible to design new materials and control their properties with extremely high precision. It will also be possible to manipulate and intervene in the most delicate processes in the living cell – with at present unimaginable benefits for medical experimentation and ultimately treatment.

The molecule used by the researchers was composed of four elements – boron, carbon, nickel and hydrogen. The nickel was the key to the process, since it is capable of bonding in several ways in molecules.

The model developed is composed of two spherical structures with a common axis. When exposed to light or electrical stimulation, the top sphere rotates with respect to the bottom one by an angle of 144 degrees. After this rotation, the molecule is locked into its new position.

By measuring the absorption, emission and scattering of light from the molecule and using detailed theoretical calculations, the researchers were able to study the intricate mechanism of the molecule’s operation. They are now trying to find a way of chemically bonding one of the spheres of the molecule to a surface and attaching a molecular chain to the other sphere, capable of performing a rotary task on demand (a kind of mini-motor). Further, by attaching two molecules together along their axes, say the scientists, rotations other than 144 degrees could be achieved.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il/huji/eng/

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>