Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protease-inhibitor cocktail protects, increases anti-microbial action of promising new peptide

12.03.2004


The anti-microbial activity of promising peptides shown in laboratory studies to kill several medically important fungi, some of which are resistant to current drugs, can be enhanced further by protecting the peptides from enzymes programmed to destroy them, University at Buffalo oral biologists have found.



A protease inhibitor cocktail containing compounds that inactivate the enzymes that normally would degrade the small pieces of protein enabled the potential treatments for oral infections to more than double their anti-microbial action, results showed.

Guo-xian Wei, D.D.S., postdoctoral associate in the laboratory of Libuse Bobek, Ph.D., professor of oral biology in UB’s School of Dental Medicine, reported the study findings today (March 11, 2004) at the International Association of Dental Research meeting in Hawaii.


One peptide in particular, called MUC7 12-mer, a piece of a larger, naturally occurring human salivary mucin molecule, has shown particular promise for treating drug-resistant fungal strains, Wei said.

Only a few drugs are available to treat these infections, and some fungal organisms already are resistant, presenting a particular problem for patients with depressed immune systems, such as those with HIV/AIDS, organ-transplant patients and chemotherapy patients.

In earlier research in Bobek’s laboratory, MUC7 12-mer killed fungal agents that cause the most common opportunistic infections that threaten these patients -- candidiasis and cryptococcosis. In addition, the peptide was active in very low concentrations, reducing the likelihood of adverse reactions.

However, when the UB researchers tested MUC7 12-mer in saliva, its potency decreased considerably. They theorized that enzymes, or proteases, in the saliva were breaking down the peptide. To test their theory, they exposed the microbes to the peptide in the presence of saliva and a commercially available protease inhibitor cocktail.

Results showed that MUC7 12-mer killed 96 percent to 99 percent of five different fungal strains in the presence of the protease inhibitors. Without the inhibitors, the peptide killed 18 percent, 21 percent and 40 percent of three strains and approximately 74 percent of two strains. "These results confirm our hypothesis that the PIC protects and increases anti-microbial action of this peptide," said Wei. "Our next step is to see if the peptide-protease inhibitor combination performs equally well in an animal model."


Bobek is co-author on the study, which was supported by a grant from the National Institute of Dental and Craniofacial Research.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB’s more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>