Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protease-inhibitor cocktail protects, increases anti-microbial action of promising new peptide

12.03.2004


The anti-microbial activity of promising peptides shown in laboratory studies to kill several medically important fungi, some of which are resistant to current drugs, can be enhanced further by protecting the peptides from enzymes programmed to destroy them, University at Buffalo oral biologists have found.



A protease inhibitor cocktail containing compounds that inactivate the enzymes that normally would degrade the small pieces of protein enabled the potential treatments for oral infections to more than double their anti-microbial action, results showed.

Guo-xian Wei, D.D.S., postdoctoral associate in the laboratory of Libuse Bobek, Ph.D., professor of oral biology in UB’s School of Dental Medicine, reported the study findings today (March 11, 2004) at the International Association of Dental Research meeting in Hawaii.


One peptide in particular, called MUC7 12-mer, a piece of a larger, naturally occurring human salivary mucin molecule, has shown particular promise for treating drug-resistant fungal strains, Wei said.

Only a few drugs are available to treat these infections, and some fungal organisms already are resistant, presenting a particular problem for patients with depressed immune systems, such as those with HIV/AIDS, organ-transplant patients and chemotherapy patients.

In earlier research in Bobek’s laboratory, MUC7 12-mer killed fungal agents that cause the most common opportunistic infections that threaten these patients -- candidiasis and cryptococcosis. In addition, the peptide was active in very low concentrations, reducing the likelihood of adverse reactions.

However, when the UB researchers tested MUC7 12-mer in saliva, its potency decreased considerably. They theorized that enzymes, or proteases, in the saliva were breaking down the peptide. To test their theory, they exposed the microbes to the peptide in the presence of saliva and a commercially available protease inhibitor cocktail.

Results showed that MUC7 12-mer killed 96 percent to 99 percent of five different fungal strains in the presence of the protease inhibitors. Without the inhibitors, the peptide killed 18 percent, 21 percent and 40 percent of three strains and approximately 74 percent of two strains. "These results confirm our hypothesis that the PIC protects and increases anti-microbial action of this peptide," said Wei. "Our next step is to see if the peptide-protease inhibitor combination performs equally well in an animal model."


Bobek is co-author on the study, which was supported by a grant from the National Institute of Dental and Craniofacial Research.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB’s more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>