Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology behind homosexuality in sheep, study confirms

09.03.2004


OHSU researchers show brain anatomy, hormone production may be cause



Researchers in the Oregon Health & Science University School of Medicine have confirmed that a male sheep’s preference for same-sex partners has biological underpinnings.

A study published in the February issue of the journal Endocrinology demonstrates that not only are certain groups of cells different between genders in a part of the sheep brain controlling sexual behavior, but brain anatomy and hormone production may determine whether adult rams prefer other rams over ewes.


"This particular study, along with others, strongly suggests that sexual preference is biologically determined in animals, and possibly in humans," said the study’s lead author, Charles E. Roselli, Ph.D., professor in the Department of Physiology and Pharmacology, OHSU School of Medicine. "The hope is that the study of these brain differences will provide clues to the processes involved in the development and regulation of heterosexual, as well as homosexual, behavior."

The results lend credence to previous studies in humans that described anatomical differences between the brains of heterosexual men and homosexual men, as well as sexually unique versions of the same cluster of brain cells in males and females.

"Same-sex attraction is widespread across many different species." said Roselli, whose laboratory collaborated with the Department of Animal Sciences at Oregon State University and the USDA Agricultural Research Service’s U.S. Sheep Experiment Station in Dubois, Idaho.

Kay Larkin, Ph.D., an OHSU electron microscopist who performed laboratory analysis for the study, said scientists now have a marker that points to whether a ram may prefer other rams over ewes.

"There’s a difference in the brain that is correlated with partner preference rather than gender of the animal you’re looking at," she said.

About 8 percent of domestic rams display preferences for other males as sexual partners. Scientists don’t believe it’s related to dominance or flock hierarchy; rather, their typical motor pattern for intercourse is merely directed at rams instead of ewes.

"They’re one of the few species that have been systematically studied, so we’re able to do very careful and controlled experiments on sheep," Roselli said. "We used rams that had consistently shown exclusive sexual preference for other rams when they were given a choice between rams and ewes."

The study examined 27 adult, 4-year-old sheep of mixed Western breeds reared at the U.S. Sheep Experiment Station. They included eight male sheep exhibiting a female mate preference – female-oriented rams – nine male-oriented rams and 10 ewes.

OHSU researchers discovered an irregularly shaped, densely packed cluster of nerve cells in the hypothalamus of the sheep brain, which they named the ovine sexually dimorphic nucleus or oSDN because it is a different size in rams than in ewes. The hypothalamus is the part of the brain that controls metabolic activities and reproductive functions.

The oSDN in rams that preferred females was "significantly" larger and contained more neurons than in male-oriented rams and ewes. In addition, the oSDN of the female-oriented rams expressed higher levels of aromatase, a substance that converts testosterone to estradiol so the androgen hormone can facilitate typical male sexual behaviors. Aromatase expression was no different between male-oriented rams and ewes.

The study was the first to demonstrate an association between natural variations in sexual partner preferences and brain structure in nonhuman animals.

The Endocrinology study is part of a five-year, OHSU-led effort funded through 2008 by the National Center for Research Resources, a component of the National Institutes of Health. Scientists will work to further characterize the rams’ behavior and study when during development these differences arise. "We do have some evidence the nucleus is sexually dimorphic in late gestation," Roselli said.

They would also like to know whether sexual preferences can be altered by manipulating the prenatal hormone environment, such as by using drugs to prevent the actions of androgen in the fetal sheep brain.

In collaboration with geneticists at UCLA, Roselli has begun to study possible differences in gene expression between brains of male-oriented and female-oriented rams.

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu/
http://www.ohsu.edu/news/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>