Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Visualizing the central dogma


Researchers create first movie starring DNA, RNA, and protein

In 1958, five years after he helped discover the double helix structure of DNA, Francis Crick coined the term "Central Dogma" to characterize the all-important cellular processes whereby DNA is "transcribed" into RNA and RNA is "translated" into protein. Since then, researchers have typically examined individual aspects of the Central Dogma in isolation, by developing separate systems for studying transcription or translation. Now, researchers at Cold Spring Harbor Laboratory have developed the first system for viewing how the Central Dogma unfolds in its entirety, from DNA to RNA to protein, within living cells. The study appears in the March 5 issue of the journal Cell.

The researchers, led by Dr. David Spector, developed a multi-component, fluorescence microscopy imaging system in which the DNA near an inducible gene can be visualized, the messenger RNA (mRNA) encoded by the gene is labeled yellow, and the protein encoded by the mRNA is labeled blue. In short, the system’s DNA, RNA, and proteins are labeled so that they glow different colors and can be seen with a microscope. The scientists then captured time-lapse images as the inducible gene was switched on: First, the gene’s tightly coiled DNA adopted a more relaxed, open shape. Next, RNA could be seen accumulating and being spliced in the nucleus and exported to the cytoplasm. Finally, the proteins appeared.

Although scientists have known that the production of proteins based on the information stored in DNA involves dynamic interactions among many molecules that carry out gene transcription, RNA splicing and export, and translation, they have never before been able to simultaneously track all of the products of transcription and translation as they are produced and move throughout living cells.

Spector and his colleagues have used the method to detect specific events that transform the architecture of chromosomes from a transcriptionally silent state to an actively transcribed state. These findings have revealed fundamental information about how genes are switched on and off in the context of living cells. The method is likely to be used by many researchers interested in studying how a variety of dynamic processes involving DNA, RNA, and protein unfold and are coordinated in normal cells, as well as how those processes or their coordination might be altered in cancerous or other diseased cells.

Peter Sherwood | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>