Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast mutations offer window into human disease

06.02.2004


Different combinations of genetic mutations may give rise to diverse human traits, including complex diseases such as schizophrenia, say scientists at the University of Toronto and McGill University in Montreal.



Drs. Brenda Andrews and Charles Boone of U of T and Howard Bussey of McGill used simple yeast cells to demonstrate that there are many different combinations of genetic mutations that can lead to cell death or reduced cell fitness. The research team will now focus on mapping gene interactions for those yeast genes that are similar to human genes. Their study appears in the Feb. 6 issue of the journal Science.

The researchers crossed a yeast strain carrying a mutation in a particular gene of interest with a collection or "array" of other yeast strains to determine which gene pairs were lethal. The team studied more than 4,000 of these interactions involving gene pairs and was able to provide a large scale "genetic interaction network" that provokes new ideas about how genes interact to produce different traits.


For example, the researchers determined that genes arrange themselves in "neighbourhoods" or small networks. A gene is more likely to interact with its "neighbour," they discovered, than with more distant genes. Each yeast gene has on average about 30 of these interactions over the life of a cell, many more than had been predicted by previous experiments. By understanding the composition of these genetic "neighbourhoods," it is possible to predict which genes will interact and which traits will result when two genes combine.

"Constructing these networks will help human geneticists to focus their research on the culprits of disease," says Andrews, chair of U of T’s medical genetics and microbiology department. "If we can begin to construct these kinds of networks in an intelligent way, we might directly accelerate the discovery of those genes that are lethal when combined."

The study has sparked interest among other researchers in developing techniques for mapping the genetic "neighbourhoods" of more complex organisms.

"Because our global genetic network studies map out how cells work, these studies have implications that may help us in understanding the foundation of complex inherited diseases, such as glaucoma, type II diabetes and schizophrenia," says Bussey, a professor in McGill’s biology department.

The study’s lead authors are Amy Hin Yan Tong, a U of T graduate student in the molecular and medical genetics department, and Guillaume Lesage, a post-doctoral student at McGill. The international team included researchers at Harvard Medical School, Cornell University, the University of Pennsylvania, the University of California, the Institute of Biochemistry in Zurich, Switzerland, MRC Laboratory in Cambridge, England, and Memorial Sloan-Kettering Cancer Center in New York.


The study received funding from the Canadian Institutes of Health Research, the Canadian Foundation for Innovation and Genome Canada through the Ontario Genomics Institute and Genome Quebec.

NOTE: A photo of researcher Tong with robotics equipment used in the research may be obtained from Elaine Smith at U of T.

CONTACTS:

Brenda Andrews
University of Toronto
416-978-8562
brenda.andrews@utoronto.ca

Charles Boone
University of Toronto
416-946-7620
charlie.boone@utoronto.ca

Elaine Smith
U of T Public Affairs
416-978-5949
elaine.smith@utoronto.ca

Howard Bussey
McGill University
Can be reached through Anie Perrault, Genome Canada,
613-296-7292 (cell)

Sylvain-Jacques Desjardins
University Relations Office
McGill University
514-398-6752
sylvain-jacques.desjardins@mcgill.ca

Elaine Smith | University of Toronto
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>