Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore scientists team with Russia to discover elements 113 and 115

03.02.2004


Scientists from the Glenn T. Seaborg Institute and the Chemical Biology and Nuclear Science Division at the Lawrence Livermore National Laboratory, in collaboration with researchers from the Joint Institute for Nuclear Research in Russia (JINR), have discovered the two newest super heavy elements, element 113 and element 115.


Left: An accelerated calcium-48 ion and an americium-243 target atom just before they collide.
Right: The moment of collision between an accelerated calcium-48 ion and an americium-243 target atom.



Left: The residue of the collision creates the new 115 element that begins decaying with the emission of alpha particles into element 113.
Right: The spontaneous fission decay eventually results in two separate atoms of previously known elements.



In experiments conducted at the JINR U400 cyclotron with the Dubna gas-filled separator between July 14 and Aug. 10, 2003, the team of scientists observed atomic decay patterns, or chains, that confirm the existence of element 115 and element 113. In these decay chains, element 113 is produced via the alpha decay of element 115.

The results have been accepted for publication in the Feb. 1, 2004 issue of Physical Review C. "These elemental discoveries underscore both the value of federally-supported basic research and the benefit of unfetteredinternational scientific collaboration," Secretary of Energy Spencer Abraham said. The experiments produced four atoms each of element 115 and element 113 through the fusion reaction of calcium-48 nuclei impinging on an amercium-243 target.


The team observed three similar decay chains consisting of five consecutive alpha decays that, combined, took less than 30 seconds and terminated in a spontaneous fission of an element 105 (dubnium) isotope with a very long half-life (16 hours), making the discovery of particular interest to chemists. An interesting fourth decay chain also was observed that consisted of decays that were unlike the previous three chains.

Joshua Patin, Livermore’s primary data analyst on the team, said the three similar decay patterns were a "positive identifier that something good had been seen because the long decay chains just don’t happen that often."

"This just opens up the horizon on the periodic table," said Ken Moody, Livermore’s team leader. "It allows us to expand the fundamental principles of chemistry. From new chemistry comes new materials and new technology."

Scientists at Livermore and JINR independently verified the data.

An efficient accelerator is needed to obtain an intense calcium-48 beam. The results have only been achieved to date on the JINR’s U400 cyclotron. Associates at JINR’s ion-source group produced the intense calcium beams while Livermore supplied the americium target material.

"Twenty years ago, no one would have ever thought that this was possible because the technology to produce such an element just wasn’t there," Patin said. "But with the efficiency of the Russian cyclotron and the ability to run the experiments for long periods of time, we were able to achieve this tremendous accomplishment."

Members of the Livermore team include Patin, Moody, John Wild, Mark Stoyer, Nancy Stoyer, Dawn Shaughnessy, Jacqueline Kenneally and Ronald Lougheed.

Livermore has had a long-standing heavy element group since the inception of the Laboratory in 1952. The group has been successful in the discovery of several new elements over the years because it has access to unique materials to perform the experiments. In 1998 and 1999, the Laboratory announced the discovery of elements 114 and 116, respectively.

"This is quite a breakthrough for science," said Chemistry and Materials Science Associate Director Tomas Diaz de la Rubia. "We’ve discovered two new elements that provide insight into the makeup of the universe.

"For our scientists to find two more pieces of the puzzle is a testament to the strength and value of the science and technology at this Laboratory."

Scientists in Livermore’s Seaborg Institute, named after the renowned nuclear chemist, reinvent nuclear and bionuclear science to enable out-of-the-box solutions to national problems.


The work is supported by the Russian Ministry of Atomic Energy and the U.S. Department of Energy as part of the Russian Federation/U.S. Joint Coordinating Committee for Research on Fundamental Properties of Matter.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | LLNL
Further information:
http://www.llnl.gov/llnl/06news/NewsReleases/2004/NR-04-02-01.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>