Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers discover new activity in cystic fibrosis protein

28.01.2004


Even well-studied proteins can reveal surprises. University of Iowa scientists have discovered a new enzyme activity for the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is the protein that is defective in cystic fibrosis, a common life-threatening genetic disease that affects primarily the lungs and pancreas of young people. The discovery, which appeared in the Dec. 26, 2003 issue of Cell, helps solve a long-standing puzzle about how this important protein works.



CFTR forms a channel, or pore, in the membrane of airway cells. When the channel is open, the salt chloride flows through it from one side of the membrane to the other. It has been known for many years that CFTR channel opening requires a molecule called ATP and that CFTR has an enzymatic activity called ATPase that uses ATP. ATP is the energy currency of the cell and the ATPase reaction spends the energy of ATP to power enzyme activity. Because chloride flows passively through the CFTR channel, it has long seemed puzzling that the opening of CFTR would require the substantial energy of ATP. Moreover, energy from ATP is not required to fuel any other ion channel.

The UI study now reveals that CFTR can function as an adenylate kinase enzyme. Like an ATPase, the adenylate kinase reaction uses ATP. But in contrast to an ATPase, an adenylate kinase enzyme also uses a related molecule called AMP. Importantly, the adenylate kinase neither consumes nor produces energy, but it controls channel opening. The study also suggests that in normal cells it is this enzyme activity rather than the ATPase that opens the CFTR channel.


"We think that in the normal physiologic context where AMP is present, CFTR would function as an adenylate kinase," said Christoph Randak, M.D., UI postdoctoral scholar in the UI Department of Internal Medicine and lead author of the study. "Thus, the CFTR channel may function without consuming a large amount of energy."

The UI study may also have broad implications beyond CFTR. CFTR is a member of the ABC transporter family, the largest group of proteins that move molecules across membranes. These proteins exist in all forms of life and they transfer a very diverse group of molecules across membranes.

ABC transporters are involved in many genetic diseases, and they are significant targets for therapeutics. Therefore, it will now be important to investigate whether other ABC transporters are also adenylate kinases. If they are, the adenylate kinase activity could provide a novel way to modulate their actions.

"ABC transporter proteins contain a very conserved ’engine’ that controls transport," Randak said. "Our study indicates that at least in CFTR that ’engine’ can be run either by an ATPase, which uses energy, or an adenylate kinase, which is energy-neutral."

Randak’s co-author for the study was Michael J. Welsh, M.D., Howard Hughes Medical Institute (HHMI) Investigator, and the Roy J. Carver Chair of Biomedical Research in the UI Departments of Internal Medicine and Physiology and Biophysics.


The study was funded in part by grants from the National Heart, Lung and Blood Institute, one of the National Institutes of Health, and the Forschungsgemeinschaft, a German grant-awarding organization.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

CONTACT(S): Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>