Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers discover new activity in cystic fibrosis protein

28.01.2004


Even well-studied proteins can reveal surprises. University of Iowa scientists have discovered a new enzyme activity for the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is the protein that is defective in cystic fibrosis, a common life-threatening genetic disease that affects primarily the lungs and pancreas of young people. The discovery, which appeared in the Dec. 26, 2003 issue of Cell, helps solve a long-standing puzzle about how this important protein works.



CFTR forms a channel, or pore, in the membrane of airway cells. When the channel is open, the salt chloride flows through it from one side of the membrane to the other. It has been known for many years that CFTR channel opening requires a molecule called ATP and that CFTR has an enzymatic activity called ATPase that uses ATP. ATP is the energy currency of the cell and the ATPase reaction spends the energy of ATP to power enzyme activity. Because chloride flows passively through the CFTR channel, it has long seemed puzzling that the opening of CFTR would require the substantial energy of ATP. Moreover, energy from ATP is not required to fuel any other ion channel.

The UI study now reveals that CFTR can function as an adenylate kinase enzyme. Like an ATPase, the adenylate kinase reaction uses ATP. But in contrast to an ATPase, an adenylate kinase enzyme also uses a related molecule called AMP. Importantly, the adenylate kinase neither consumes nor produces energy, but it controls channel opening. The study also suggests that in normal cells it is this enzyme activity rather than the ATPase that opens the CFTR channel.


"We think that in the normal physiologic context where AMP is present, CFTR would function as an adenylate kinase," said Christoph Randak, M.D., UI postdoctoral scholar in the UI Department of Internal Medicine and lead author of the study. "Thus, the CFTR channel may function without consuming a large amount of energy."

The UI study may also have broad implications beyond CFTR. CFTR is a member of the ABC transporter family, the largest group of proteins that move molecules across membranes. These proteins exist in all forms of life and they transfer a very diverse group of molecules across membranes.

ABC transporters are involved in many genetic diseases, and they are significant targets for therapeutics. Therefore, it will now be important to investigate whether other ABC transporters are also adenylate kinases. If they are, the adenylate kinase activity could provide a novel way to modulate their actions.

"ABC transporter proteins contain a very conserved ’engine’ that controls transport," Randak said. "Our study indicates that at least in CFTR that ’engine’ can be run either by an ATPase, which uses energy, or an adenylate kinase, which is energy-neutral."

Randak’s co-author for the study was Michael J. Welsh, M.D., Howard Hughes Medical Institute (HHMI) Investigator, and the Roy J. Carver Chair of Biomedical Research in the UI Departments of Internal Medicine and Physiology and Biophysics.


The study was funded in part by grants from the National Heart, Lung and Blood Institute, one of the National Institutes of Health, and the Forschungsgemeinschaft, a German grant-awarding organization.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

CONTACT(S): Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>