Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers discover new activity in cystic fibrosis protein

28.01.2004


Even well-studied proteins can reveal surprises. University of Iowa scientists have discovered a new enzyme activity for the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is the protein that is defective in cystic fibrosis, a common life-threatening genetic disease that affects primarily the lungs and pancreas of young people. The discovery, which appeared in the Dec. 26, 2003 issue of Cell, helps solve a long-standing puzzle about how this important protein works.



CFTR forms a channel, or pore, in the membrane of airway cells. When the channel is open, the salt chloride flows through it from one side of the membrane to the other. It has been known for many years that CFTR channel opening requires a molecule called ATP and that CFTR has an enzymatic activity called ATPase that uses ATP. ATP is the energy currency of the cell and the ATPase reaction spends the energy of ATP to power enzyme activity. Because chloride flows passively through the CFTR channel, it has long seemed puzzling that the opening of CFTR would require the substantial energy of ATP. Moreover, energy from ATP is not required to fuel any other ion channel.

The UI study now reveals that CFTR can function as an adenylate kinase enzyme. Like an ATPase, the adenylate kinase reaction uses ATP. But in contrast to an ATPase, an adenylate kinase enzyme also uses a related molecule called AMP. Importantly, the adenylate kinase neither consumes nor produces energy, but it controls channel opening. The study also suggests that in normal cells it is this enzyme activity rather than the ATPase that opens the CFTR channel.


"We think that in the normal physiologic context where AMP is present, CFTR would function as an adenylate kinase," said Christoph Randak, M.D., UI postdoctoral scholar in the UI Department of Internal Medicine and lead author of the study. "Thus, the CFTR channel may function without consuming a large amount of energy."

The UI study may also have broad implications beyond CFTR. CFTR is a member of the ABC transporter family, the largest group of proteins that move molecules across membranes. These proteins exist in all forms of life and they transfer a very diverse group of molecules across membranes.

ABC transporters are involved in many genetic diseases, and they are significant targets for therapeutics. Therefore, it will now be important to investigate whether other ABC transporters are also adenylate kinases. If they are, the adenylate kinase activity could provide a novel way to modulate their actions.

"ABC transporter proteins contain a very conserved ’engine’ that controls transport," Randak said. "Our study indicates that at least in CFTR that ’engine’ can be run either by an ATPase, which uses energy, or an adenylate kinase, which is energy-neutral."

Randak’s co-author for the study was Michael J. Welsh, M.D., Howard Hughes Medical Institute (HHMI) Investigator, and the Roy J. Carver Chair of Biomedical Research in the UI Departments of Internal Medicine and Physiology and Biophysics.


The study was funded in part by grants from the National Heart, Lung and Blood Institute, one of the National Institutes of Health, and the Forschungsgemeinschaft, a German grant-awarding organization.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

CONTACT(S): Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>