Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers discover new activity in cystic fibrosis protein

28.01.2004


Even well-studied proteins can reveal surprises. University of Iowa scientists have discovered a new enzyme activity for the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is the protein that is defective in cystic fibrosis, a common life-threatening genetic disease that affects primarily the lungs and pancreas of young people. The discovery, which appeared in the Dec. 26, 2003 issue of Cell, helps solve a long-standing puzzle about how this important protein works.



CFTR forms a channel, or pore, in the membrane of airway cells. When the channel is open, the salt chloride flows through it from one side of the membrane to the other. It has been known for many years that CFTR channel opening requires a molecule called ATP and that CFTR has an enzymatic activity called ATPase that uses ATP. ATP is the energy currency of the cell and the ATPase reaction spends the energy of ATP to power enzyme activity. Because chloride flows passively through the CFTR channel, it has long seemed puzzling that the opening of CFTR would require the substantial energy of ATP. Moreover, energy from ATP is not required to fuel any other ion channel.

The UI study now reveals that CFTR can function as an adenylate kinase enzyme. Like an ATPase, the adenylate kinase reaction uses ATP. But in contrast to an ATPase, an adenylate kinase enzyme also uses a related molecule called AMP. Importantly, the adenylate kinase neither consumes nor produces energy, but it controls channel opening. The study also suggests that in normal cells it is this enzyme activity rather than the ATPase that opens the CFTR channel.


"We think that in the normal physiologic context where AMP is present, CFTR would function as an adenylate kinase," said Christoph Randak, M.D., UI postdoctoral scholar in the UI Department of Internal Medicine and lead author of the study. "Thus, the CFTR channel may function without consuming a large amount of energy."

The UI study may also have broad implications beyond CFTR. CFTR is a member of the ABC transporter family, the largest group of proteins that move molecules across membranes. These proteins exist in all forms of life and they transfer a very diverse group of molecules across membranes.

ABC transporters are involved in many genetic diseases, and they are significant targets for therapeutics. Therefore, it will now be important to investigate whether other ABC transporters are also adenylate kinases. If they are, the adenylate kinase activity could provide a novel way to modulate their actions.

"ABC transporter proteins contain a very conserved ’engine’ that controls transport," Randak said. "Our study indicates that at least in CFTR that ’engine’ can be run either by an ATPase, which uses energy, or an adenylate kinase, which is energy-neutral."

Randak’s co-author for the study was Michael J. Welsh, M.D., Howard Hughes Medical Institute (HHMI) Investigator, and the Roy J. Carver Chair of Biomedical Research in the UI Departments of Internal Medicine and Physiology and Biophysics.


The study was funded in part by grants from the National Heart, Lung and Blood Institute, one of the National Institutes of Health, and the Forschungsgemeinschaft, a German grant-awarding organization.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

CONTACT(S): Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>