Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Describe Cell Activity Leading to Disruption of Neuron Migration

22.01.2004


An interaction between two brain proteins that leads to abnormal brain development has been identified by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the January 22, 2004 issue of the journal Neuron.



The studies in mice, conducted in the lab of Joseph G. Gleeson, M.D., UCSD assistant professor of neurosciences, combines work in both humans and mice to identify a protein kinase called Cdk5 as the “off” switch for a crucial neuronal migration protein called doublecortin. When Cdk5 adds a phosphate molecule to doublecortin, the doublecortin is inactivated and neuronal migration is arrested.

In the normal brain, neurons are born deep within fluid filled cavities of the brain during the third and fourth month of gestation. Then, they must migrate hundreds of cell-body distances to reach their proper position within the six-layered cortex. When this migration is defective and neurons are stopped short of their destination, there is an absence of the normal grooves and ridges that characterize the brain in higher mammals.


A severe brain disorder in newborns, called lissencephaly, or “smooth brain,” is a result of abnormal neuronal migration where only four, instead of six layers of cortex are formed. Those children who survive the mutation suffer from profound mental retardation, epilepsy and cerebral palsy. Gleeson and colleagues previously showed that mutations in the doublecortin gene account for approximately 20 percent of the cases of lissencephaly in humans.

The study concluded that Cdk5 phosphorylation and inactivation of doublecortin takes place normally in the developing brain, but that it is balanced by reactivation of doublecortin by an as-yet-unidentified “on” switch. It appears that the regulation of this phosphorylation is critical for migration, and that both inactivation and reactivation are required for the normal functioning of the protein. Gleeson’s laboratory is currently searching for the signals that serve as the “on” switch to reactivate doublecortin.

“Neuron migration is poorly understood by scientists,” he noted. “With the discovery of Cdk5 as a factor that regulates doublecortin, we are learning more about this vital developmental process. Eventually, discoveries such as this will contribute to therapies to prevent abnormal brain development.”

In back-to-back published articles in 1998, Gleeson and a team led by Christopher A. Walsh at Harvard*, and a group of French scientists co-discovered doublecortin as one of the genes that causes lissencephaly when it is mutated. Further studies in 1999 by Gleeson and colleagues determined that doublecortin directly binds to microtubules, part of the cellular cytoskeleton that acts like a railroad track for the contents of neurons that move in the brain. However, researchers still didn’t know how doublecortin worked or what regulated its function.

In the current study, the Gleeson team used sophisticated molecular technology to determine that Cdk5 interacts with doublecortin to add a phosphate molecule to a precise site on the protein. Next, the team inactivated Cdk5 in one group of neurons, thus preventing its phosphorylation of doublecortin. When these neurons, or neurons containing mutant doublecortin, were pitted in a race with normal neurons, they stopped short of their goal, indicating that this regulation by Cdk5 was critical for the function of doublecortin on the cells’ ability to move.

In the January 22 issue of Neuron is commentary about the Gleeson discovery by Joseph Lo Turco, Ph.D., University of Connecticut, who notes that doublecortin may “sit at the center of a general cellular program of morphological change engaged as neurons migrate through developing neocortex.”

Additional authors of the UCSD paper included first author Teruyuki Tanaka, M.D., UCSD Department of Neurosciences; Finley F. Serneo, M.D., UCSD Department of Neurosciences; Huang-Chun Tseng, Ph.D., and Li-Huei Tsai, Ph.D., Department of Pathology, Harvard Medical School and the Howard Hughes Medical Institute; and Ashok B. Kulkarni, Ph.D., Functional Genomics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health.

The study was funded by the Epilepsy Foundation of America; the Searle, Merck and Klingenstein Foundations; and the National Institute of Neurological Diseases and Stroke.

##

*Gleeson et al, Cell, 92(1): 63-72 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9489700&dopt=Abstract

News Media Contact:
Sue Pondrom
619-543-6163

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2004/01_21_Gleeson.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9489700&dopt=Abstract

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>