Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Describe Cell Activity Leading to Disruption of Neuron Migration

22.01.2004


An interaction between two brain proteins that leads to abnormal brain development has been identified by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the January 22, 2004 issue of the journal Neuron.



The studies in mice, conducted in the lab of Joseph G. Gleeson, M.D., UCSD assistant professor of neurosciences, combines work in both humans and mice to identify a protein kinase called Cdk5 as the “off” switch for a crucial neuronal migration protein called doublecortin. When Cdk5 adds a phosphate molecule to doublecortin, the doublecortin is inactivated and neuronal migration is arrested.

In the normal brain, neurons are born deep within fluid filled cavities of the brain during the third and fourth month of gestation. Then, they must migrate hundreds of cell-body distances to reach their proper position within the six-layered cortex. When this migration is defective and neurons are stopped short of their destination, there is an absence of the normal grooves and ridges that characterize the brain in higher mammals.


A severe brain disorder in newborns, called lissencephaly, or “smooth brain,” is a result of abnormal neuronal migration where only four, instead of six layers of cortex are formed. Those children who survive the mutation suffer from profound mental retardation, epilepsy and cerebral palsy. Gleeson and colleagues previously showed that mutations in the doublecortin gene account for approximately 20 percent of the cases of lissencephaly in humans.

The study concluded that Cdk5 phosphorylation and inactivation of doublecortin takes place normally in the developing brain, but that it is balanced by reactivation of doublecortin by an as-yet-unidentified “on” switch. It appears that the regulation of this phosphorylation is critical for migration, and that both inactivation and reactivation are required for the normal functioning of the protein. Gleeson’s laboratory is currently searching for the signals that serve as the “on” switch to reactivate doublecortin.

“Neuron migration is poorly understood by scientists,” he noted. “With the discovery of Cdk5 as a factor that regulates doublecortin, we are learning more about this vital developmental process. Eventually, discoveries such as this will contribute to therapies to prevent abnormal brain development.”

In back-to-back published articles in 1998, Gleeson and a team led by Christopher A. Walsh at Harvard*, and a group of French scientists co-discovered doublecortin as one of the genes that causes lissencephaly when it is mutated. Further studies in 1999 by Gleeson and colleagues determined that doublecortin directly binds to microtubules, part of the cellular cytoskeleton that acts like a railroad track for the contents of neurons that move in the brain. However, researchers still didn’t know how doublecortin worked or what regulated its function.

In the current study, the Gleeson team used sophisticated molecular technology to determine that Cdk5 interacts with doublecortin to add a phosphate molecule to a precise site on the protein. Next, the team inactivated Cdk5 in one group of neurons, thus preventing its phosphorylation of doublecortin. When these neurons, or neurons containing mutant doublecortin, were pitted in a race with normal neurons, they stopped short of their goal, indicating that this regulation by Cdk5 was critical for the function of doublecortin on the cells’ ability to move.

In the January 22 issue of Neuron is commentary about the Gleeson discovery by Joseph Lo Turco, Ph.D., University of Connecticut, who notes that doublecortin may “sit at the center of a general cellular program of morphological change engaged as neurons migrate through developing neocortex.”

Additional authors of the UCSD paper included first author Teruyuki Tanaka, M.D., UCSD Department of Neurosciences; Finley F. Serneo, M.D., UCSD Department of Neurosciences; Huang-Chun Tseng, Ph.D., and Li-Huei Tsai, Ph.D., Department of Pathology, Harvard Medical School and the Howard Hughes Medical Institute; and Ashok B. Kulkarni, Ph.D., Functional Genomics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health.

The study was funded by the Epilepsy Foundation of America; the Searle, Merck and Klingenstein Foundations; and the National Institute of Neurological Diseases and Stroke.

##

*Gleeson et al, Cell, 92(1): 63-72 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9489700&dopt=Abstract

News Media Contact:
Sue Pondrom
619-543-6163

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2004/01_21_Gleeson.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9489700&dopt=Abstract

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>