Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Progress in probing the mosquito’s sense of smell


Researchers find odorant in human sweat that attracts female mosquitoes

Male and female Anopheles mosquitoes
By Neil Brake, Vanderbilt University

Today, we know a little bit more about one of mankind’s deadliest enemies, the mosquito. Scientists have taken an important step toward understanding the mosquito’s sense of smell, an avenue of research that may lead to better ways to repel the deadly insect.

In a joint effort reported in the Jan. 15 issue of the journal Nature, researchers at Vanderbilt and Yale universities have verified that the antennae of female Anopheles mosquitoes that prey on humans contain receptors that respond to one of the chemical compounds found in human sweat.

"This validates our hypothesis that the olfactory system of mosquitoes--and other insects--consists of an array of different receptors, each of which responds to a very narrow range of odorants," says Laurence J. Zwiebel, associate professor of biological sciences at Vanderbilt, who participated in the study. His co-authors were Vanderbilt graduate student A. Nicole Fox along with Yale colleagues Elissa A. Halem, a graduate student, and professor John R. Carlson.

Confirmation of this hypothesis means that it should be possible to identify the specific human odorants and the protein receptors that allow female mosquitoes to identify their hosts when they need blood to satisfy their reproductive needs. In addition to cataloging the human odorants that attract mosquitoes, it also will allow the researchers to go further and search for additional chemicals that either attract or repel these highly selective insects.

"Looking at attractants is only half of the picture. There is no evidence that mosquitoes find some human odorants repellent, but we’re interested in exploring this," says Zwiebel. Such discoveries might lead to new and more effective repellants that could play a major role in reducing the death toll from diseases spread by mosquitoes, including malaria, encephalitis, West Nile, dengue, hemorrhagic and yellow fevers.

Previous studies have shown that human sweat contains about 350 different aromatic compounds, but not much research has been done on them. For example, researchers do not know much about the individual variations in these odorants, not even how greatly the odorants of men and women differ.

However, recent data from researchers in the Netherlands suggests that mosquitoes use a blend of many odorants in targeting prey. "This is a very complex system," Zwiebel observes.

The Nature paper reports another important advance. The researchers were able to get a mosquito olfactory gene to work in Drosophila, the fruit fly that has become the "white lab rat" of genetic research. This provides the researchers with a wealth of tools they can use to explore the nature of the mosquito’s olfactory system at the genetic and molecular level.

The researchers created fruit flies with Anopheles’ olfactory genes and then tested their sensitivity to different compounds found in human sweat. They identified one particular compound, 4-methylphenol, strongly activated an odorant receptor that is expressed in female mosquitoes but not in males. Previous studies had shown that the production of this protein is suppressed in female mosquitoes immediately following a blood meal when they are no longer responsive to human odors. The new finding strengthens the argument that female Anopheles use 4-methylphenol to seek out hosts.

The fact that the mosquito gene works properly in the fruit fly has another significant ramification. It means that the fundamental nature of the olfactory system in other insects must be extremely similar to that of the mosquito. "As a result, our research should have a direct bearing not only on the mosquito, but also on other insects that carry disease and act as agricultural pests," Zwiebel says.

David F. Salisbury | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>