Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in probing the mosquito’s sense of smell

16.01.2004


Researchers find odorant in human sweat that attracts female mosquitoes


Male and female Anopheles mosquitoes
By Neil Brake, Vanderbilt University



Today, we know a little bit more about one of mankind’s deadliest enemies, the mosquito. Scientists have taken an important step toward understanding the mosquito’s sense of smell, an avenue of research that may lead to better ways to repel the deadly insect.

In a joint effort reported in the Jan. 15 issue of the journal Nature, researchers at Vanderbilt and Yale universities have verified that the antennae of female Anopheles mosquitoes that prey on humans contain receptors that respond to one of the chemical compounds found in human sweat.


"This validates our hypothesis that the olfactory system of mosquitoes--and other insects--consists of an array of different receptors, each of which responds to a very narrow range of odorants," says Laurence J. Zwiebel, associate professor of biological sciences at Vanderbilt, who participated in the study. His co-authors were Vanderbilt graduate student A. Nicole Fox along with Yale colleagues Elissa A. Halem, a graduate student, and professor John R. Carlson.

Confirmation of this hypothesis means that it should be possible to identify the specific human odorants and the protein receptors that allow female mosquitoes to identify their hosts when they need blood to satisfy their reproductive needs. In addition to cataloging the human odorants that attract mosquitoes, it also will allow the researchers to go further and search for additional chemicals that either attract or repel these highly selective insects.

"Looking at attractants is only half of the picture. There is no evidence that mosquitoes find some human odorants repellent, but we’re interested in exploring this," says Zwiebel. Such discoveries might lead to new and more effective repellants that could play a major role in reducing the death toll from diseases spread by mosquitoes, including malaria, encephalitis, West Nile, dengue, hemorrhagic and yellow fevers.

Previous studies have shown that human sweat contains about 350 different aromatic compounds, but not much research has been done on them. For example, researchers do not know much about the individual variations in these odorants, not even how greatly the odorants of men and women differ.

However, recent data from researchers in the Netherlands suggests that mosquitoes use a blend of many odorants in targeting prey. "This is a very complex system," Zwiebel observes.

The Nature paper reports another important advance. The researchers were able to get a mosquito olfactory gene to work in Drosophila, the fruit fly that has become the "white lab rat" of genetic research. This provides the researchers with a wealth of tools they can use to explore the nature of the mosquito’s olfactory system at the genetic and molecular level.

The researchers created fruit flies with Anopheles’ olfactory genes and then tested their sensitivity to different compounds found in human sweat. They identified one particular compound, 4-methylphenol, strongly activated an odorant receptor that is expressed in female mosquitoes but not in males. Previous studies had shown that the production of this protein is suppressed in female mosquitoes immediately following a blood meal when they are no longer responsive to human odors. The new finding strengthens the argument that female Anopheles use 4-methylphenol to seek out hosts.

The fact that the mosquito gene works properly in the fruit fly has another significant ramification. It means that the fundamental nature of the olfactory system in other insects must be extremely similar to that of the mosquito. "As a result, our research should have a direct bearing not only on the mosquito, but also on other insects that carry disease and act as agricultural pests," Zwiebel says.

David F. Salisbury | EurekAlert!
Further information:
http://www.exploration.vanderbilt.edu
http://www.vanderbilt.edu/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>