Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in probing the mosquito’s sense of smell

16.01.2004


Researchers find odorant in human sweat that attracts female mosquitoes


Male and female Anopheles mosquitoes
By Neil Brake, Vanderbilt University



Today, we know a little bit more about one of mankind’s deadliest enemies, the mosquito. Scientists have taken an important step toward understanding the mosquito’s sense of smell, an avenue of research that may lead to better ways to repel the deadly insect.

In a joint effort reported in the Jan. 15 issue of the journal Nature, researchers at Vanderbilt and Yale universities have verified that the antennae of female Anopheles mosquitoes that prey on humans contain receptors that respond to one of the chemical compounds found in human sweat.


"This validates our hypothesis that the olfactory system of mosquitoes--and other insects--consists of an array of different receptors, each of which responds to a very narrow range of odorants," says Laurence J. Zwiebel, associate professor of biological sciences at Vanderbilt, who participated in the study. His co-authors were Vanderbilt graduate student A. Nicole Fox along with Yale colleagues Elissa A. Halem, a graduate student, and professor John R. Carlson.

Confirmation of this hypothesis means that it should be possible to identify the specific human odorants and the protein receptors that allow female mosquitoes to identify their hosts when they need blood to satisfy their reproductive needs. In addition to cataloging the human odorants that attract mosquitoes, it also will allow the researchers to go further and search for additional chemicals that either attract or repel these highly selective insects.

"Looking at attractants is only half of the picture. There is no evidence that mosquitoes find some human odorants repellent, but we’re interested in exploring this," says Zwiebel. Such discoveries might lead to new and more effective repellants that could play a major role in reducing the death toll from diseases spread by mosquitoes, including malaria, encephalitis, West Nile, dengue, hemorrhagic and yellow fevers.

Previous studies have shown that human sweat contains about 350 different aromatic compounds, but not much research has been done on them. For example, researchers do not know much about the individual variations in these odorants, not even how greatly the odorants of men and women differ.

However, recent data from researchers in the Netherlands suggests that mosquitoes use a blend of many odorants in targeting prey. "This is a very complex system," Zwiebel observes.

The Nature paper reports another important advance. The researchers were able to get a mosquito olfactory gene to work in Drosophila, the fruit fly that has become the "white lab rat" of genetic research. This provides the researchers with a wealth of tools they can use to explore the nature of the mosquito’s olfactory system at the genetic and molecular level.

The researchers created fruit flies with Anopheles’ olfactory genes and then tested their sensitivity to different compounds found in human sweat. They identified one particular compound, 4-methylphenol, strongly activated an odorant receptor that is expressed in female mosquitoes but not in males. Previous studies had shown that the production of this protein is suppressed in female mosquitoes immediately following a blood meal when they are no longer responsive to human odors. The new finding strengthens the argument that female Anopheles use 4-methylphenol to seek out hosts.

The fact that the mosquito gene works properly in the fruit fly has another significant ramification. It means that the fundamental nature of the olfactory system in other insects must be extremely similar to that of the mosquito. "As a result, our research should have a direct bearing not only on the mosquito, but also on other insects that carry disease and act as agricultural pests," Zwiebel says.

David F. Salisbury | EurekAlert!
Further information:
http://www.exploration.vanderbilt.edu
http://www.vanderbilt.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>