Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping a road to understanding human health

18.12.2003


International HapMap Project begins the cartography of human genome variation



Tracking down genes involved in health and disease and the response of patients to therapies is a principal goal of contemporary biomedical research. In the December 18 issue of Nature, the International HapMap Consortium describes the new tools and approaches it has developed that will enhance the ability of scientists to identify disease-related genes and to develop corresponding diagnostic and therapeutic measures.

Individual predisposition to disease and differential response to therapies are determined in part by variations in DNA sequence scattered throughout our genetic sequence called single-nucleotide polymorphisms, or SNPs. Many regions of the human genome bear common, telltale variations in DNA sequence that are termed "tag SNPs." One goal of the International HapMap Project is to map the locations of representative tag SNPs in DNA samples from human populations with ancestry from parts of Africa, Asia, and Europe.


Dr. Lincoln Stein, a bioinformaticist at Cold Spring Harbor Laboratory in New York whose group is one of the major participants in the HapMap project said, "The results of the HapMap project will increase the power and reduce the cost of future large-scale genetic association studies and thereby significantly speed the discovery of genes involved in cancer, heart disease, and other common ailments."

Dr. David Bentley, Head of Genetics at the Wellcome Trust Sanger Institute in Cambridge (UK) and the leader of another major group involved with the project said, "The HapMap will be applicable to a broad range of medical conditions that have a genetic component, including common human diseases. Because it is vital that such a resource is readily available, the groups contributing to this international project will release their data and the resulting map of variation as a public resource. In that way, we anticipate the maximum medical benefit will accrue in the most rapid fashion."

The HapMap Project is an international collaboration involving researchers in the United States, Canada, China, Japan, Nigeria, and the United Kingdom. The results generated will be applicable to all human populations, and will be available to researchers around the world.

The $120 million project was officially announced in October 2002 and is expected to take three years to complete.

Since the announcement of the project, DNA samples have been obtained and substantial amounts of variation data have already been mapped and released. Preliminary analyses of the data confirm the utility of the HapMap. The study published in Nature describes in detail the project’s scientific goals and methods.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/
http://www.hapmap.org
http://www.hapmap.org/groups.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>