Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of international project on cattle genome

16.12.2003


A US$53-million international project to sequence the cattle genome, involving CSIRO, was launched today (1pm, Friday, 12 December US, 5am Saturday, 13 December AEST) in Washington, United States.



The joint sequencing effort is led by the US National Human Genome Research Institute (NHGRI), which is part of the National Institutes of Health (NIH), and also involves United States Department of Agriculture; the State of Texas; Genome Canada; and Agritech Investments Ltd, Dairy Insight Inc. and AgResearch Ltd, all of New Zealand.

"We are extremely proud to be participating in this research project," says US Agriculture Secretary, Ann Veneman. "The results of the sequencing promise to benefit human health by contributing to its knowledge, as well as having an impact on the dairy and beef industries by advancing the health and disease management of beef and dairy cattle, and improving the nutritional value of beef and dairy products."


CSIRO Livestock Industries’ Chief Shaun Coffey announced in July that CSIRO is contributing AU$1.5 million to the Bovine Genome Sequencing Project.

"CSIRO’s involvement places the Australian livestock industry at the forefront of international research and provides strong prospects for market advantage," he says.

"Currently the gross value of livestock-derived products in Australia is approximately Aus$15 billion per annum and the greater part of this comes from cattle and sheep products. It is a figure anticipated to increase significantly in the future as a result of sequencing of the bovine genome," he says.

Expected benefits include the ability to: identify genes that control growth efficiency, muscle development and milk composition; and, to breed disease resistant cattle and sheep.

According to the leader of the Australia-based research team, CSIRO’s Ross Tellam, information gained about the sequence will be made freely available to all interested researchers.

"The ’intellectual property’ rights will be derived from how we use the sequence, not the sequence itself," Dr Tellam says.

"Australia is in a good position to capitalise on the information that will be generated from sequencing the bovine genome as we have the necessary infrastructure and expertise to maximise the gains from this sequencing," he says.

Scheduled for completion by the end of 2005, the project is expected to drive the creation of innovative products and solutions to current production problems within the livestock industry.

The bovine genome is similar in size to the genomes of humans and other mammals, with an estimated size of three billion base pairs. Besides its potential for improving dairy and meat products and enhancing food safety, adding the genomic sequence of the cow (Bos taurus) to the growing list of sequenced animal genomes will help researchers learn more about the human genome.

NHGRI is one of the 27 institutes and centres at NIH, an agency of the Department of Health and Human Services. Additional information about NHGRI can be found at www.genome.gov [external link - new window]

More information:
Ross Tellam, CSIRO, mobile: 0409 775 044
Shaun Coffey, CSIRO, mobile: 0419 788 839

Media assistance:
Emma Homes, CSIRO, mobile: 0409 236 152

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=prcattlegenome

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>