Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A first glance at global genetic networks

15.12.2003



The potential of new technologies to reveal insights into the fundamental structure and function of biological systems continues to grow rapidly --but the ability to interpret and merge these datasets lags behind the ability to collect it. In an effort to overcome these limitations, Sven Bergmann, Jan Ihmels, and Naama Barkai, of the Weizmann Institute of Science in Rehovot, Israel, developed a comparative model that integrates gene expression data from microarrays with genomic sequence information to explore genetic networks.

Analyzing the gene expression profiles of six distantly related organisms--bacteria, yeast, plant, nematode, fruitfly, and human--the researchers found that functionally related genes were co-expressed in each species. The most strongly conserved sets of co-expressed genes were associated with core cellular processes or organelles.

Although the regulatory details of individual gene groups varied, the researchers found common ground in the overall landscape of the expression data. The transcription programs exhibit properties typical of dynamically evolving "real-world" networks that are designed to perform in uncertain environments and maintain connections between elements independent of scale. These properties were originally identified in studies of social networks and the World Wide Web, but they aptly describe the real-world challenges of the cell. Studies of dynamically evolving networks show that nodes (i.e., genes and proteins) added at an early stage (much like highly conserved genes) are more likely to develop many connections, acting as a hub. Following these organizational principles, transcription networks would have a relatively small number of highly connected "hub genes"--though a much higher number than one would expect in a random network.



And that is what the authors observed: the networks they constructed from the expression data had the expected number of highly connected hub genes, which tend to be essential and conserved between organisms. Since these highly connected genes are likely to have homologues in other organisms, they can serve as powerful and efficient tools for assigning function to the thousands of uncharacterized sequences found in sequence databases. This model presents a framework to explore the underlying properties that govern the design and function of the cell, and provides important clues--in the form of conserved transcription modules--to the evolutionary building blocks that generate diversity.



All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

Dr Naama Barkai | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>