Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of identifying and isolating stem cells developed

12.12.2003


Cells may help researchers in skin and hair therapies; tool can be used to find other body stem cells, including cancer stem cells



Researchers at the Howard Hughes Medical Institute at The Rockefeller University have discovered a new method to track and isolate elusive stem cells. The new animal model they developed was successfully tested by isolating and characterizing skin stem cells, but may also be valuable in searching for stem cells that produce the cells of the heart, pancreas or other specific body tissues.

The finding, to appear in the journal Science and reported online in the Dec. 12 issue of Science Express, offers promise for what could be the first broadly adaptable way to find such master cells, which can create tissue as needed and are seen as the foundation for regenerative medicine. Before this finding, the only stem cells that had been isolated and characterized were from blood, nerve cells and embryonic tissue.


In order to avoid accumulating damaging mutations, long-lived stem cells in their natural home (niche) are often "slow cycling," dividing only infrequently. However, upon injury or normal "wear and tear," stem cells are mobilized to leave their niche, divide and replenish the damaged tissue. The study provides a list of more than 150 genetic factors that distinguish the long-lived, "slow cycling" stem cells of the skin from their short-lived, rapidly dividing "daughter cells."

This information will help scientists understand how these mysterious cells are able to replenish both skin epidermis and hair, and what nutrients may help stem cells produce more stem cells in the laboratory. In addition, some of these new genes are likely to serve as markers for these stem cells, making them easier to identify and isolate in the future.

"We now have a much better picture of the traits of mouse skin stem cells, and we can now use these genetic data to examine whether human skin stem cells possess similar traits to the mouse stem cells," says the study’s lead investigator, Elaine Fuchs, Ph.D., professor and head of the Laboratory of Mammalian Cell Biology and Development at Rockefeller and an investigator at HHMI.

Fuchs suggests that the skin stem cell model system could hold promise for a variety of medical applications, such as improved regeneration of skin epidermis for burn victims and new understanding of what prompts skin stem cells to grow new hair.

"And this powerful tool may now help us to identify stem cells in other tissues that undergo extensive rejuvenation, like those in the gut and in cornea. We may even be able to identify and isolate mutated stem cells that lead to certain kinds of cancer," Fuchs says.

The system, which took several years to develop, pairs two kinds of genetically altered mice -- one of which carries a fluorescent protein and the other a gene that activates it -- to create mice offspring that will bathe the skin’s slow cycling cells in a green glow.

"Now anyone can use the mouse model to search for the stem cells of their choice," says first author Tudorita Tumbar, Ph.D., a postdoctoral associate in the Fuchs lab, who led the effort to create the mouse model.

Because they are so powerful, and so few in number, stem cells are used sparingly by the body, and are tucked away in protected places. In the skin, researchers have long suspected that the "slow cycling" cells are actually stem cells. These slow cycling cells have been found in a "niche," a tiny bulge halfway up the side of a hair follicle shaft.

Similar niches have been found in the eye’s cornea and in intestinal cells, and are suspected to be present in several different tissue systems.

Researchers discovered several years ago that skin niche cells (so called label-retaining cells) in mice that had been tagged with a chemical marker could travel out of the niche, and move down to the bulb of the hair follicle to form new hair or move up to create new skin epidermis. But scientists were unable to isolate these label-retaining cells, and hence had only a scant view of the properties of these very special skin cells.

Reasoning that some of these label-retaining cells were skin stem cells, the Fuchs team developed a system to identify them, isolate them and compare their genetic profile with known stem cells.

The system, dubbed "pulse and chase," required development of two different genetically altered mice. In one mouse, a fusion gene (histone H2B-GFP) that can express a green fluorescent protein when cells divide was introduced into a mouse embryo. But in order for the mouse to express this green fusion protein, it needed to be turned on by an "activator" protein. That is where the second mouse came in. The Fuchs lab mated their mouse to one that possessed a second fusion gene (keratin 5-tetracycline-off-activator) that only produces the "activator" protein in the skin epithelial cells. In the final transgenic mice, the glowing histone-H2B-GFP protein was made in all the skin epithelial cells, where it entered the nucleus and bound to DNA. That was the "pulse" part of the formula.

To turn the fluorescent protein off and watch what happened in the "chase," the researchers simply added tetracycline to the mouse food, and no more fluorescent protein was made in the skin. Those cells that rapidly divide soon diluted out their glow and became dim, whereas cells that slowly cycled - the putative stem cells - were the only ones left that glowed brightly. Some cells, the slow-cycling cells, glowed for weeks after others had stopped, says Tumbar.

"After a month the remaining glowing cells, which we predicted to be stem cells, were in the bulge," Tumbar says.

The researchers took those cells out of the bulge, isolated their RNA, and used microarray technology to obtain their "transcriptional profile." (The DNA in genes produces RNA, which codes for protein production). A number of the 150-plus sequences code for proteins that are found on the surface of the slow-cycling stem cells or are secreted by them. Those proteins are new markers that may help find stem cells in human tissue, the researchers say.

The researchers then compared genes found in the skin stem cell niche with those found in blood, neuronal and embryonic stem cells. They found that 40 percent of the genes expressed in slow-cycling skin cells, compared with the genes found in their daughter cells, were also expressed in the other stem cell types. And 80 to 90 percent of the genes expressed in the skin cells were expressed in at least one of the three other stem cell populations.

"This comparison sets the ground for future research regarding similarities between slow-cycling cells and other stem cells," says Tumbar.

Another ongoing comparison between the transcriptional profile of the skin slow-cycling cells (compared to their progeny) and blood stem cells (compared to their progeny) shows at least a 10 percent match, so far, Tumbar says. "This suggests possible commonalities in how different adult stem cell types distinguish themselves from their own progeny," Fuchs explains.

"Previously we knew of just a handful of proteins that distinguish skin stem cells from their progeny, and now we know of more than 100," says Fuchs. "The laboratory is now working to understand how these proteins define the characteristics of these stem cells, such as their slow-cycling properties, their ability to be mobilized to repair skin epidermis in response to wound injuries, and their ability to grow new hair in the normal course of rejuvenation. We are just at the tip of the iceberg."

Finally, the pulse-and-chase system described in the Science paper can be used to hunt for stem cells in other tissue types. Researchers can use the histone H2B-GFP fusion gene mouse as it is, with no modifications, and just mate it with a mouse they expressing the activator gene in their favorite cells or tissue, the investigators say.

Also participating in the research were, from the Fuchs laboratory, were Geraldine Guasch, Ph.D., Valentina Greco, Ph.D., Cedric Blanpain, Ph.D., William E. Lowry, Ph.D., and Michael Rendl, Ph.D.


This research was supported by the Howard Hughes Medical Institute, National Institutes of Health, Human Frontier Science Program, European Molecular Biology Organization, NATO, BAEF, Life Sciences Research and Shroedinger foundations

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>