Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Sex Protein Identified at UC Riverside

11.12.2003



Discovery Shapes Understanding of how Seeds are Created

Researchers at the University of California, Riverside have identified a protein that helps guide sperm to egg in flowering lily plants, a significant step forward in the field of plant reproduction.

Elizabeth Lord, professor of plant biology and a member of the Center for Plant Cell Biology at UC Riverside, authored the paper titled “Chemocyanin, a Small, Basic Protein from the Lily Stigma Induces Pollen Tube Chemotropism.” The paper appears this week in the Proceedings of the National Academy of Sciences.



Botanists have long known that, in flowering plants, the female organs play a role in guiding sperm-laden pollen tubes to the eggs found in ovules. But until now, they did not know exactly how. Lord’s team found that chemocyanin, a protein with a previously unknown function, effectively guided sperm-laden lily pollen tubes to the plant’s ovules, which hold the eggs from which come seeds in the lily. The protein works specifically in lilies. Tobacco pollen tubes were not similarly guided.

The paper also shows that chemocyanin was more effective when another protein found in the stigma of the lily, SCA, was present. Chemocyanin and other proteins such as SCA may unlock the network of signals involved in plant reproduction.

“The importance of understanding how plants reproduce is enormous for the future manipulation of crop and nursery plants,” said Lord. “There is a huge flower industry in California, and we know little about how seed set occurs in most flowering plants.”

Lilies are good examples because they cannot produce seed with their own pollen so they must be cross-pollinated with another variety, according to Lord. And while the industry grows Easter lilies from bulbs not seed, whenever they want to produce new varieties for the flower market or for gardens they have to produce seed by crossing varieties.

“This research has relevance for all flowering plants because we do not know yet how pollen tubes, which carry sperm cells, are guided to the egg cell in the ovary,” said Lord. “Our discovery of a protein from the pistil which acts to guide pollen tubes to the egg cell is a first for flowering plants.”

The protein, chemocyanin, is concentrated on the flower stigma, where pollen grains land on the flower. The pollen grains germinate on the stigma to form pollen tubes, which carry sperm cells, then pass through the female tissues starting from the stigma, ending up in the ovary, which contain ovules that contain eggs.

“You would be surprised to know that we don’t even know the identity of the molecules that attract human sperm cells to the egg,” Lord added.

Lord’s research team at UC Riverside included doctoral students Sunran Kim and Juan Dong; postgraduate researchers Jean-Claude Mollet and Sang-Youl Park; and academic coordinator in the Department of Chemistry, Kangling Zhang.

Ricardo Duran | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=710
http://www.ucr.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>