Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Sex Protein Identified at UC Riverside

11.12.2003



Discovery Shapes Understanding of how Seeds are Created

Researchers at the University of California, Riverside have identified a protein that helps guide sperm to egg in flowering lily plants, a significant step forward in the field of plant reproduction.

Elizabeth Lord, professor of plant biology and a member of the Center for Plant Cell Biology at UC Riverside, authored the paper titled “Chemocyanin, a Small, Basic Protein from the Lily Stigma Induces Pollen Tube Chemotropism.” The paper appears this week in the Proceedings of the National Academy of Sciences.



Botanists have long known that, in flowering plants, the female organs play a role in guiding sperm-laden pollen tubes to the eggs found in ovules. But until now, they did not know exactly how. Lord’s team found that chemocyanin, a protein with a previously unknown function, effectively guided sperm-laden lily pollen tubes to the plant’s ovules, which hold the eggs from which come seeds in the lily. The protein works specifically in lilies. Tobacco pollen tubes were not similarly guided.

The paper also shows that chemocyanin was more effective when another protein found in the stigma of the lily, SCA, was present. Chemocyanin and other proteins such as SCA may unlock the network of signals involved in plant reproduction.

“The importance of understanding how plants reproduce is enormous for the future manipulation of crop and nursery plants,” said Lord. “There is a huge flower industry in California, and we know little about how seed set occurs in most flowering plants.”

Lilies are good examples because they cannot produce seed with their own pollen so they must be cross-pollinated with another variety, according to Lord. And while the industry grows Easter lilies from bulbs not seed, whenever they want to produce new varieties for the flower market or for gardens they have to produce seed by crossing varieties.

“This research has relevance for all flowering plants because we do not know yet how pollen tubes, which carry sperm cells, are guided to the egg cell in the ovary,” said Lord. “Our discovery of a protein from the pistil which acts to guide pollen tubes to the egg cell is a first for flowering plants.”

The protein, chemocyanin, is concentrated on the flower stigma, where pollen grains land on the flower. The pollen grains germinate on the stigma to form pollen tubes, which carry sperm cells, then pass through the female tissues starting from the stigma, ending up in the ovary, which contain ovules that contain eggs.

“You would be surprised to know that we don’t even know the identity of the molecules that attract human sperm cells to the egg,” Lord added.

Lord’s research team at UC Riverside included doctoral students Sunran Kim and Juan Dong; postgraduate researchers Jean-Claude Mollet and Sang-Youl Park; and academic coordinator in the Department of Chemistry, Kangling Zhang.

Ricardo Duran | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=710
http://www.ucr.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>