Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Sex Protein Identified at UC Riverside

11.12.2003



Discovery Shapes Understanding of how Seeds are Created

Researchers at the University of California, Riverside have identified a protein that helps guide sperm to egg in flowering lily plants, a significant step forward in the field of plant reproduction.

Elizabeth Lord, professor of plant biology and a member of the Center for Plant Cell Biology at UC Riverside, authored the paper titled “Chemocyanin, a Small, Basic Protein from the Lily Stigma Induces Pollen Tube Chemotropism.” The paper appears this week in the Proceedings of the National Academy of Sciences.



Botanists have long known that, in flowering plants, the female organs play a role in guiding sperm-laden pollen tubes to the eggs found in ovules. But until now, they did not know exactly how. Lord’s team found that chemocyanin, a protein with a previously unknown function, effectively guided sperm-laden lily pollen tubes to the plant’s ovules, which hold the eggs from which come seeds in the lily. The protein works specifically in lilies. Tobacco pollen tubes were not similarly guided.

The paper also shows that chemocyanin was more effective when another protein found in the stigma of the lily, SCA, was present. Chemocyanin and other proteins such as SCA may unlock the network of signals involved in plant reproduction.

“The importance of understanding how plants reproduce is enormous for the future manipulation of crop and nursery plants,” said Lord. “There is a huge flower industry in California, and we know little about how seed set occurs in most flowering plants.”

Lilies are good examples because they cannot produce seed with their own pollen so they must be cross-pollinated with another variety, according to Lord. And while the industry grows Easter lilies from bulbs not seed, whenever they want to produce new varieties for the flower market or for gardens they have to produce seed by crossing varieties.

“This research has relevance for all flowering plants because we do not know yet how pollen tubes, which carry sperm cells, are guided to the egg cell in the ovary,” said Lord. “Our discovery of a protein from the pistil which acts to guide pollen tubes to the egg cell is a first for flowering plants.”

The protein, chemocyanin, is concentrated on the flower stigma, where pollen grains land on the flower. The pollen grains germinate on the stigma to form pollen tubes, which carry sperm cells, then pass through the female tissues starting from the stigma, ending up in the ovary, which contain ovules that contain eggs.

“You would be surprised to know that we don’t even know the identity of the molecules that attract human sperm cells to the egg,” Lord added.

Lord’s research team at UC Riverside included doctoral students Sunran Kim and Juan Dong; postgraduate researchers Jean-Claude Mollet and Sang-Youl Park; and academic coordinator in the Department of Chemistry, Kangling Zhang.

Ricardo Duran | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=710
http://www.ucr.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>