Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The beginning of the end of flagella

21.11.2003


Protein discovery in Chlamydomonas



A new protein discovery sheds light on how chemical information is transported within cells. A group of researchers, which includes Dartmouth Professor of Biological Sciences Roger Sloboda, have found the protein EB1 in Chlamydomonas, a single-celled organism commonly used to study cell biology. Previous research has implicated EB1 in the progression of many colon cancers.

Published in the November 11 edition of the journal Current Biology, the research examined the chemical motors that power events in flagella, antenna-like structures on some cells. Specifically, the research focused on intraflagellar transport (IFT), the process where proteins required for flagellar growth and maintenance move within the flagella. The discovery of the protein EB1 at the tip of the flagella on Chlamydomonas furthers investigations into the role the protein plays in flagellar function and perhaps in regulating IFT itself.


"Particles move out to the tip of the flagella, turn around, and then move back to the base," says Sloboda, who conducted this research in Joel Rosenbaum’s laboratory at Yale University while on sabbatical last year. "The only change in speed or direction occurs when the particles reach the tip. Now we think EB1 might play a role in controlling the molecular transport system responsible for IFT when the particles reach the tip. This finding will help us get a handle on what’s going on at the tip of the flagellum."

The flagella beat rhythmically, moving the organism, and are made of nine double strands of microtubules and a central pair. According to Sloboda, similar IFT phenomena also take place in rod and cone cells of the human retina, in human kidney cells, and in nerve cells.

To determine where EB1 occurs in Chlamydomonas cells, the researchers cloned and sequenced the protein to make antibodies specific for EB1. The researchers found that the antibodies bound to the flagella tips, indicating that EB1 stays at the tip, and does not move along the length of the flagella.

"This unexpected observation led to the paper being featured on the cover of the journal," says Sloboda. "It was a great result, because now we know more about the structure of the flagellar tip due to the presence of EB1. Using EB1 as bait, we can move on to fish out other proteins that associate with EB1 and learn how together these proteins are involved in tip structure and function and the process of IFT. Hopefully, our work will inform others working on colon cancer, kidney disease, vision, and central nervous system disorders such as Alzheimer’s and Lou Gehrig’s diseases."


The other authors on the paper include Lotte Pedersen, a postdoctoral fellow at Yale University; Stefan Geimer, then a postdoctoral fellow at Yale University and now at the Institut Universität zu Köln in Cologne, Germany; and Joel Rosenbaum, Professor of Molecular, Cellular, and Developmental Biology at Yale University.

The study was funded by the National Institutes of Health, a fellowship from the Deutsche Forschungsgemeinschaft, and the Ira Allen Eastman (Class of 1829) Professorship at Dartmouth, which was established in 1910 through a gift to the College by his widow, Jane Eastman.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>