Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The beginning of the end of flagella

21.11.2003


Protein discovery in Chlamydomonas



A new protein discovery sheds light on how chemical information is transported within cells. A group of researchers, which includes Dartmouth Professor of Biological Sciences Roger Sloboda, have found the protein EB1 in Chlamydomonas, a single-celled organism commonly used to study cell biology. Previous research has implicated EB1 in the progression of many colon cancers.

Published in the November 11 edition of the journal Current Biology, the research examined the chemical motors that power events in flagella, antenna-like structures on some cells. Specifically, the research focused on intraflagellar transport (IFT), the process where proteins required for flagellar growth and maintenance move within the flagella. The discovery of the protein EB1 at the tip of the flagella on Chlamydomonas furthers investigations into the role the protein plays in flagellar function and perhaps in regulating IFT itself.


"Particles move out to the tip of the flagella, turn around, and then move back to the base," says Sloboda, who conducted this research in Joel Rosenbaum’s laboratory at Yale University while on sabbatical last year. "The only change in speed or direction occurs when the particles reach the tip. Now we think EB1 might play a role in controlling the molecular transport system responsible for IFT when the particles reach the tip. This finding will help us get a handle on what’s going on at the tip of the flagellum."

The flagella beat rhythmically, moving the organism, and are made of nine double strands of microtubules and a central pair. According to Sloboda, similar IFT phenomena also take place in rod and cone cells of the human retina, in human kidney cells, and in nerve cells.

To determine where EB1 occurs in Chlamydomonas cells, the researchers cloned and sequenced the protein to make antibodies specific for EB1. The researchers found that the antibodies bound to the flagella tips, indicating that EB1 stays at the tip, and does not move along the length of the flagella.

"This unexpected observation led to the paper being featured on the cover of the journal," says Sloboda. "It was a great result, because now we know more about the structure of the flagellar tip due to the presence of EB1. Using EB1 as bait, we can move on to fish out other proteins that associate with EB1 and learn how together these proteins are involved in tip structure and function and the process of IFT. Hopefully, our work will inform others working on colon cancer, kidney disease, vision, and central nervous system disorders such as Alzheimer’s and Lou Gehrig’s diseases."


The other authors on the paper include Lotte Pedersen, a postdoctoral fellow at Yale University; Stefan Geimer, then a postdoctoral fellow at Yale University and now at the Institut Universität zu Köln in Cologne, Germany; and Joel Rosenbaum, Professor of Molecular, Cellular, and Developmental Biology at Yale University.

The study was funded by the National Institutes of Health, a fellowship from the Deutsche Forschungsgemeinschaft, and the Ira Allen Eastman (Class of 1829) Professorship at Dartmouth, which was established in 1910 through a gift to the College by his widow, Jane Eastman.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>