Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The beginning of the end of flagella

21.11.2003


Protein discovery in Chlamydomonas



A new protein discovery sheds light on how chemical information is transported within cells. A group of researchers, which includes Dartmouth Professor of Biological Sciences Roger Sloboda, have found the protein EB1 in Chlamydomonas, a single-celled organism commonly used to study cell biology. Previous research has implicated EB1 in the progression of many colon cancers.

Published in the November 11 edition of the journal Current Biology, the research examined the chemical motors that power events in flagella, antenna-like structures on some cells. Specifically, the research focused on intraflagellar transport (IFT), the process where proteins required for flagellar growth and maintenance move within the flagella. The discovery of the protein EB1 at the tip of the flagella on Chlamydomonas furthers investigations into the role the protein plays in flagellar function and perhaps in regulating IFT itself.


"Particles move out to the tip of the flagella, turn around, and then move back to the base," says Sloboda, who conducted this research in Joel Rosenbaum’s laboratory at Yale University while on sabbatical last year. "The only change in speed or direction occurs when the particles reach the tip. Now we think EB1 might play a role in controlling the molecular transport system responsible for IFT when the particles reach the tip. This finding will help us get a handle on what’s going on at the tip of the flagellum."

The flagella beat rhythmically, moving the organism, and are made of nine double strands of microtubules and a central pair. According to Sloboda, similar IFT phenomena also take place in rod and cone cells of the human retina, in human kidney cells, and in nerve cells.

To determine where EB1 occurs in Chlamydomonas cells, the researchers cloned and sequenced the protein to make antibodies specific for EB1. The researchers found that the antibodies bound to the flagella tips, indicating that EB1 stays at the tip, and does not move along the length of the flagella.

"This unexpected observation led to the paper being featured on the cover of the journal," says Sloboda. "It was a great result, because now we know more about the structure of the flagellar tip due to the presence of EB1. Using EB1 as bait, we can move on to fish out other proteins that associate with EB1 and learn how together these proteins are involved in tip structure and function and the process of IFT. Hopefully, our work will inform others working on colon cancer, kidney disease, vision, and central nervous system disorders such as Alzheimer’s and Lou Gehrig’s diseases."


The other authors on the paper include Lotte Pedersen, a postdoctoral fellow at Yale University; Stefan Geimer, then a postdoctoral fellow at Yale University and now at the Institut Universität zu Köln in Cologne, Germany; and Joel Rosenbaum, Professor of Molecular, Cellular, and Developmental Biology at Yale University.

The study was funded by the National Institutes of Health, a fellowship from the Deutsche Forschungsgemeinschaft, and the Ira Allen Eastman (Class of 1829) Professorship at Dartmouth, which was established in 1910 through a gift to the College by his widow, Jane Eastman.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>