Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calcium channels control coronary artery relaxation

21.11.2003


Researchers have discovered that a specific type of calcium channel -- a pore-like protein that nestles in the cell membrane and controls the flow of calcium into the cell -- regulates the relaxation of coronary arteries.



The studies showed that mice engineered to lack these calcium channels had constricted coronary arteries and had fibrous tissue in their hearts, which was evident when the animals’ hearts reacted to chronic blood restriction. The researchers hypothesize that drugs targeting this calcium channel might one day be used to treat cardiovascular disease by opening arteries.

The researchers, led by Howard Hughes Medical Institute investigator Kevin Campbell, published their findings in the November 21, 2003, issue of the journal Science. Campbell and his colleagues at the University of Iowa collaborated with researchers from the Veterans Administration Medical Center in Iowa City, Loyola University Medical Center and the University of Texas Southwestern Medical Center.


The calcium channel under study is triggered by voltage differences across the cell membrane that cause it to open and allow calcium to flow into the cell. The operation of calcium channels is crucial to a wide array of physiological functions, including transmission of nerve impulses, muscle contraction and activation of genes. Although one type of calcium channel, called the L-type, had been shown to control muscle contraction, the action of the other type, called the T-type, remained largely unknown, said Campbell. The L-channel opens in response to large voltage differences across the cell membrane, while the T-channel responds to a weaker "depolarization," he said.

Campbell and his colleagues first became interested in exploring the T-channel because research by other scientists hinted that it might be involved in the fusion of muscle cells, or myoblasts, to one another during the development and repair of muscles. Campbell’s laboratory concentrates on muscular dystrophies, and the scientists reasoned that better understanding of the muscle-formation machinery would aid that effort.

To study the T-channels, the researchers created a knockout mouse lacking one type of T-channel, called the á1H channel. "Although our main interest was initially to look at how the myoblasts would function and fuse, we found that myoblasts looked completely normal in these animals," said Campbell. "We then realized that another type of channel, the á1G, could upregulate to compensate for the loss." However, when the scientists studied the structure of the various muscle tissues, they found a striking accumulation of fibrous tissue in heart muscle.

"We believed that this fibrosis was probably not due directly to the cardiac muscle abnormality, because we knew that a T-channel was not present in adult ventricular muscle," said Campbell. "So, it must have been caused by another abnormality, maybe in the blood vessels."

When the researchers performed visual studies of the coronary arteries of the mice and measured their contractility, they found the arteries to be irregularly shaped and constricted, although the vessels contracted normally. Such aberrations would have starved the heart of blood, inducing fibrosis, said Campbell.

To test the ability of the coronary arteries of the knockout mice to relax, the researchers administered drugs that in wild-type mice caused arterial dilation. However the drugs produced no such effect in the knockout mice.

"So, this impaired relaxation strongly suggested that this channel was involved in arterial relaxation, which was a surprise because calcium channels had been implicated in contraction, but not in relaxation," said Campbell.

Sure enough, when the researchers administered nickel -- which blocks T-channels -- to wild-type mice, dilation of their arteries was decreased.

Other research had shown that an entirely different channel, a potassium channel, plays a key role in regulating muscle relaxation. Campbell and his colleagues theorized that calcium ions flowing through T-channels might somehow "fine-tune" potassium channels.

Findings from two of their experiments supported this idea, said Campbell. A drug that opens potassium channels caused arterial dilation in both wild-type and T-channel knockout mice, they found. Also, when they isolated the potassium channel, they found it to be physically associated with the T-channel.

A great many puzzles remain concerning how the T-channel functions in coronary artery relaxation, said Campbell. One puzzle arises from the scientists’ finding that an artery-relaxing drug, called sodium nitroprusside, produced some arterial relaxation in the knockout mice. This drug releases the artery-relaxing chemical nitric oxide, leading the scientists to believe that only nitric-oxide-mediated relaxation is defective in the knockout mice.

A better understanding of T-channels function could lead to new treatments for cardiovascular disease, said Campbell. "Our current findings indicate that blocking this channel causes coronary artery constriction, which is clearly something you don’t want to do in treating heart disease," said Campbell. "However, if drugs could be developed that would open the channel, it might lead to relaxation and opening of the arteries. There are currently a number of treatments for opening blood vessels, but it’s possible that understanding this process could lead to new approaches to causing vasorelaxation," he said. "We’re very excited about the potential for this work."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>