Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calcium channels control coronary artery relaxation

21.11.2003


Researchers have discovered that a specific type of calcium channel -- a pore-like protein that nestles in the cell membrane and controls the flow of calcium into the cell -- regulates the relaxation of coronary arteries.



The studies showed that mice engineered to lack these calcium channels had constricted coronary arteries and had fibrous tissue in their hearts, which was evident when the animals’ hearts reacted to chronic blood restriction. The researchers hypothesize that drugs targeting this calcium channel might one day be used to treat cardiovascular disease by opening arteries.

The researchers, led by Howard Hughes Medical Institute investigator Kevin Campbell, published their findings in the November 21, 2003, issue of the journal Science. Campbell and his colleagues at the University of Iowa collaborated with researchers from the Veterans Administration Medical Center in Iowa City, Loyola University Medical Center and the University of Texas Southwestern Medical Center.


The calcium channel under study is triggered by voltage differences across the cell membrane that cause it to open and allow calcium to flow into the cell. The operation of calcium channels is crucial to a wide array of physiological functions, including transmission of nerve impulses, muscle contraction and activation of genes. Although one type of calcium channel, called the L-type, had been shown to control muscle contraction, the action of the other type, called the T-type, remained largely unknown, said Campbell. The L-channel opens in response to large voltage differences across the cell membrane, while the T-channel responds to a weaker "depolarization," he said.

Campbell and his colleagues first became interested in exploring the T-channel because research by other scientists hinted that it might be involved in the fusion of muscle cells, or myoblasts, to one another during the development and repair of muscles. Campbell’s laboratory concentrates on muscular dystrophies, and the scientists reasoned that better understanding of the muscle-formation machinery would aid that effort.

To study the T-channels, the researchers created a knockout mouse lacking one type of T-channel, called the á1H channel. "Although our main interest was initially to look at how the myoblasts would function and fuse, we found that myoblasts looked completely normal in these animals," said Campbell. "We then realized that another type of channel, the á1G, could upregulate to compensate for the loss." However, when the scientists studied the structure of the various muscle tissues, they found a striking accumulation of fibrous tissue in heart muscle.

"We believed that this fibrosis was probably not due directly to the cardiac muscle abnormality, because we knew that a T-channel was not present in adult ventricular muscle," said Campbell. "So, it must have been caused by another abnormality, maybe in the blood vessels."

When the researchers performed visual studies of the coronary arteries of the mice and measured their contractility, they found the arteries to be irregularly shaped and constricted, although the vessels contracted normally. Such aberrations would have starved the heart of blood, inducing fibrosis, said Campbell.

To test the ability of the coronary arteries of the knockout mice to relax, the researchers administered drugs that in wild-type mice caused arterial dilation. However the drugs produced no such effect in the knockout mice.

"So, this impaired relaxation strongly suggested that this channel was involved in arterial relaxation, which was a surprise because calcium channels had been implicated in contraction, but not in relaxation," said Campbell.

Sure enough, when the researchers administered nickel -- which blocks T-channels -- to wild-type mice, dilation of their arteries was decreased.

Other research had shown that an entirely different channel, a potassium channel, plays a key role in regulating muscle relaxation. Campbell and his colleagues theorized that calcium ions flowing through T-channels might somehow "fine-tune" potassium channels.

Findings from two of their experiments supported this idea, said Campbell. A drug that opens potassium channels caused arterial dilation in both wild-type and T-channel knockout mice, they found. Also, when they isolated the potassium channel, they found it to be physically associated with the T-channel.

A great many puzzles remain concerning how the T-channel functions in coronary artery relaxation, said Campbell. One puzzle arises from the scientists’ finding that an artery-relaxing drug, called sodium nitroprusside, produced some arterial relaxation in the knockout mice. This drug releases the artery-relaxing chemical nitric oxide, leading the scientists to believe that only nitric-oxide-mediated relaxation is defective in the knockout mice.

A better understanding of T-channels function could lead to new treatments for cardiovascular disease, said Campbell. "Our current findings indicate that blocking this channel causes coronary artery constriction, which is clearly something you don’t want to do in treating heart disease," said Campbell. "However, if drugs could be developed that would open the channel, it might lead to relaxation and opening of the arteries. There are currently a number of treatments for opening blood vessels, but it’s possible that understanding this process could lead to new approaches to causing vasorelaxation," he said. "We’re very excited about the potential for this work."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>