Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several commonly used pesticides are toxic to mitochondria in laboratory experiments

10.11.2003


Pesticides attack same cellular targets as rotenone - already implicated in Parkinson’s disease



Scientists at Emory University School of Medicine have found in laboratory experiments that several commonly used pesticides are just as toxic or even more toxic to the mitochondria of cells than the pesticide rotenone, which already has been implicated in the development of Parkinson’s disease. The Emory neurologists, led by Tim Greenamyre, MD, PhD and Todd B. Sherer, PhD, will present the results of their comparative research with pesticides at the Society for Neuroscience meeting in New Orleans on Saturday, Nov. 8.
Parkinson’s disease, which is one of the most common neurodegenerative diseases, has been associated abnormalities of mitochondria, which are the "power plants" that provide all cells with energy. Rotenone and many other pesticides are known to damage the mitochondria by inhibiting a mitochondrial enzyme called complex I. In earlier experiments, Dr. Greenamyre and his colleagues found that chronic treatment with low levels of rotenone caused gradual degeneration of the dopamine neurons in rats, and reproduced many of the features of Parkinsonism.

In the new study, the Emory scientists exposed human neuroblastoma cells to the pesticides rotenone, pyridaben, fenazaquin, and fenpyroximate, all of which inhibit complex I. Pyridaben was by far the most potent toxic compound, followed by rotenone and fenpyroximate, with fenazaquin being the least toxic. Pyridaben was also more potent than rotenone in producing "free radicals" and oxidative damage to the cells, both of which are thought to be important in causing Parkinson’s disease.



"These results show that commonly used pesticides are toxic to cells, and may cause the kinds of cellular damage that lead to diseases such as Parkinson’s," Dr. Sherer says. "Although our study does not prove that any particular pesticide causes Parkinson’s, it does lead to more questions about the safety of chronic exposure to these environmental agents and certainly warrants additional research." Last year Emory created a new Emory Collaborative Center for Parkinson’s Disease Environmental Research through a grant of more than $6.5 million from the National Institute of Environmental Health Sciences.

"For quite a while scientists have believed that environmental factors, including pesticides, may be important in causing Parkinson’s disease," Dr. Greenamyre says. "We are continuing our research to determine exactly how these exposures cause nerve cell damage and death."

Other Emory scientists involved in the research study were Gary W. Miller, PhD, associate professor in Emory’s Rollins School of Public Health, and neurologists Alexander Panov, PhD and Jason Richardson, PhD.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>