Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several commonly used pesticides are toxic to mitochondria in laboratory experiments

10.11.2003


Pesticides attack same cellular targets as rotenone - already implicated in Parkinson’s disease



Scientists at Emory University School of Medicine have found in laboratory experiments that several commonly used pesticides are just as toxic or even more toxic to the mitochondria of cells than the pesticide rotenone, which already has been implicated in the development of Parkinson’s disease. The Emory neurologists, led by Tim Greenamyre, MD, PhD and Todd B. Sherer, PhD, will present the results of their comparative research with pesticides at the Society for Neuroscience meeting in New Orleans on Saturday, Nov. 8.
Parkinson’s disease, which is one of the most common neurodegenerative diseases, has been associated abnormalities of mitochondria, which are the "power plants" that provide all cells with energy. Rotenone and many other pesticides are known to damage the mitochondria by inhibiting a mitochondrial enzyme called complex I. In earlier experiments, Dr. Greenamyre and his colleagues found that chronic treatment with low levels of rotenone caused gradual degeneration of the dopamine neurons in rats, and reproduced many of the features of Parkinsonism.

In the new study, the Emory scientists exposed human neuroblastoma cells to the pesticides rotenone, pyridaben, fenazaquin, and fenpyroximate, all of which inhibit complex I. Pyridaben was by far the most potent toxic compound, followed by rotenone and fenpyroximate, with fenazaquin being the least toxic. Pyridaben was also more potent than rotenone in producing "free radicals" and oxidative damage to the cells, both of which are thought to be important in causing Parkinson’s disease.



"These results show that commonly used pesticides are toxic to cells, and may cause the kinds of cellular damage that lead to diseases such as Parkinson’s," Dr. Sherer says. "Although our study does not prove that any particular pesticide causes Parkinson’s, it does lead to more questions about the safety of chronic exposure to these environmental agents and certainly warrants additional research." Last year Emory created a new Emory Collaborative Center for Parkinson’s Disease Environmental Research through a grant of more than $6.5 million from the National Institute of Environmental Health Sciences.

"For quite a while scientists have believed that environmental factors, including pesticides, may be important in causing Parkinson’s disease," Dr. Greenamyre says. "We are continuing our research to determine exactly how these exposures cause nerve cell damage and death."

Other Emory scientists involved in the research study were Gary W. Miller, PhD, associate professor in Emory’s Rollins School of Public Health, and neurologists Alexander Panov, PhD and Jason Richardson, PhD.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>