Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover genetic syndrome linked to inherited birth disorder

05.11.2003


Mayo Clinic researchers have identified a genetic syndrome -- an inherited birth disorder characterized by learning disabilities, facial malformations, impaired organs and mental retardation. It has been previously misdiagnosed or undiagnosed.



Researchers also discovered the syndrome’s genetic basis: a rearrangement of DNA called "microduplication." When microduplication occurs, DNA segments are repeated and this causes a surplus of genes. Microduplication is a little-studied mechanism underlying the origin of human diseases, and Mayo Clinic researchers are in the forefront of scientists producing evidence for its impact. Their work is made possible by the February 2001 completion of the federal Human Genome Project, the mapping of all the major genes in the human body. It has produced a database that describes the DNA sequences of the entire human complement of genes, which is estimated to be around 30,000 genes. The Mayo Clinic research, "Microduplication 22q11.2: An Emerging Syndrome," appears in the November American Journal of Human Genetics (73:1027-40)

Symptoms


Specific symptoms of this syndrome may include slightly misshapen faces and unusually widely spaced eyes, eyebrows placed higher than usual, and long, narrow faces, with irregularly shaped ears. Some patients have impaired hearing and speech, malfunctioning spleen and thymus gland, or heart defects. Other symptoms: faulty immune function and degrees of mental impairment.

The Significance of the Mayo Clinic Research

The work is important from the perspectives of genetic counseling, patient care and the history of medicine. The risk of inheriting this syndrome is 50 percent for a child with one parent affected by it and it’s highly likely that it runs in families. "This means it could make it a significant health concern," says Syed Jalal, Ph.D., a medical geneticist and professor at the Mayo Clinic College of Medicine and the study’s chief author.

While some symptoms can be treated, the syndrome cannot be cured until researchers discover a gene therapy to repair the microduplication errors. Precisely defining the new syndrome will help physicians care for their patients, but the work’s immediate importance is the insight it provides for genetic counseling. Says Dr. Jalal, "Microduplication now needs to be considered and investigated when some features or symptoms overlap with commonly occurring microdeletion disorders. This gives clinicians more information in providing the best care to patients and in understanding heritable diseases of a family’s genome." He adds that routine chromosome analysis can easily miss this duplication. Use of FISH (fluorescent DNA) probes is required.

This discovery also is important because it provides evidence for a class of new genetic errors known as "genomic arrangement" as a precondition leading to disease. Most often the opposite kind of errors -- microdeletion -- is studied and associated with disease. While the contributions of microdeletions to disease were well-known, Dr. Jalal was curious to know what would happen if the DNA were rearranged by the less-studied condition involving microduplication. "One of the things I’ve been concerned about for a long time is how structural abnormalities arise,’’ he explains.

"If you think about spontaneous miscarriages, 50 percent or more actually have a chromosomal problem. Recent large-population studies of miscarriages show that something like eight in 1,000 newborns have a chromosome problem. So chromosomal abnormalities are a part of the human experience, and are more significant than most people realize."

The Mayo Clinic research team collaborated with investigators in North Carolina, Maine, California and Georgia to define traits that constitute a new medical syndrome. They based their conclusions on detailed study -- from the position of genes in chromosomes to the placement of eyebrows on the face -- of 653 patients referred to the Mayo Clinic for evaluation of a known syndrome that shares some of the traits with the new syndrome.

This new syndrome has not yet been named, but it was often misdiagnosed as the DiGeorge syndrome -- which has many of the same symptoms. Yet this syndrome is genetically distinct. Of the 653 patients studied, 13 show microduplication of DNA within chromosome 22. DiGeorge patients have the opposite condition at that chromosomal site: microdeletion of DNA. Dr. Jalal says no one knows how common the new syndrome is. But it’s likely that it’s more common than DiGeorge syndrome, which occurs in one in 4,000 or 5,000 Caucasians.

Background Biology

Under study is a phenomenon within the chromosome known as "low-copy repeats." In low-copy repeats certain DNA sequences are present many times. They are distributed throughout the genome, and their role in giving rise to genomic rearrangements is under intense investigation in research laboratories throughout the world.

Knowing that chromosome 22 was vulnerable to rearrangement, Dr. Jalal theorized that rearrangement would lead to deletion as often as it did duplication. "Surprisingly, there was no real evidence for this,’’ he says. Previously, only three cases of microduplication disorders have been described in medical literature.

Bob Nellis | EurekAlert!
Further information:
http://www.ajhg.org/AJHG/journal

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>