Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover genetic syndrome linked to inherited birth disorder

05.11.2003


Mayo Clinic researchers have identified a genetic syndrome -- an inherited birth disorder characterized by learning disabilities, facial malformations, impaired organs and mental retardation. It has been previously misdiagnosed or undiagnosed.



Researchers also discovered the syndrome’s genetic basis: a rearrangement of DNA called "microduplication." When microduplication occurs, DNA segments are repeated and this causes a surplus of genes. Microduplication is a little-studied mechanism underlying the origin of human diseases, and Mayo Clinic researchers are in the forefront of scientists producing evidence for its impact. Their work is made possible by the February 2001 completion of the federal Human Genome Project, the mapping of all the major genes in the human body. It has produced a database that describes the DNA sequences of the entire human complement of genes, which is estimated to be around 30,000 genes. The Mayo Clinic research, "Microduplication 22q11.2: An Emerging Syndrome," appears in the November American Journal of Human Genetics (73:1027-40)

Symptoms


Specific symptoms of this syndrome may include slightly misshapen faces and unusually widely spaced eyes, eyebrows placed higher than usual, and long, narrow faces, with irregularly shaped ears. Some patients have impaired hearing and speech, malfunctioning spleen and thymus gland, or heart defects. Other symptoms: faulty immune function and degrees of mental impairment.

The Significance of the Mayo Clinic Research

The work is important from the perspectives of genetic counseling, patient care and the history of medicine. The risk of inheriting this syndrome is 50 percent for a child with one parent affected by it and it’s highly likely that it runs in families. "This means it could make it a significant health concern," says Syed Jalal, Ph.D., a medical geneticist and professor at the Mayo Clinic College of Medicine and the study’s chief author.

While some symptoms can be treated, the syndrome cannot be cured until researchers discover a gene therapy to repair the microduplication errors. Precisely defining the new syndrome will help physicians care for their patients, but the work’s immediate importance is the insight it provides for genetic counseling. Says Dr. Jalal, "Microduplication now needs to be considered and investigated when some features or symptoms overlap with commonly occurring microdeletion disorders. This gives clinicians more information in providing the best care to patients and in understanding heritable diseases of a family’s genome." He adds that routine chromosome analysis can easily miss this duplication. Use of FISH (fluorescent DNA) probes is required.

This discovery also is important because it provides evidence for a class of new genetic errors known as "genomic arrangement" as a precondition leading to disease. Most often the opposite kind of errors -- microdeletion -- is studied and associated with disease. While the contributions of microdeletions to disease were well-known, Dr. Jalal was curious to know what would happen if the DNA were rearranged by the less-studied condition involving microduplication. "One of the things I’ve been concerned about for a long time is how structural abnormalities arise,’’ he explains.

"If you think about spontaneous miscarriages, 50 percent or more actually have a chromosomal problem. Recent large-population studies of miscarriages show that something like eight in 1,000 newborns have a chromosome problem. So chromosomal abnormalities are a part of the human experience, and are more significant than most people realize."

The Mayo Clinic research team collaborated with investigators in North Carolina, Maine, California and Georgia to define traits that constitute a new medical syndrome. They based their conclusions on detailed study -- from the position of genes in chromosomes to the placement of eyebrows on the face -- of 653 patients referred to the Mayo Clinic for evaluation of a known syndrome that shares some of the traits with the new syndrome.

This new syndrome has not yet been named, but it was often misdiagnosed as the DiGeorge syndrome -- which has many of the same symptoms. Yet this syndrome is genetically distinct. Of the 653 patients studied, 13 show microduplication of DNA within chromosome 22. DiGeorge patients have the opposite condition at that chromosomal site: microdeletion of DNA. Dr. Jalal says no one knows how common the new syndrome is. But it’s likely that it’s more common than DiGeorge syndrome, which occurs in one in 4,000 or 5,000 Caucasians.

Background Biology

Under study is a phenomenon within the chromosome known as "low-copy repeats." In low-copy repeats certain DNA sequences are present many times. They are distributed throughout the genome, and their role in giving rise to genomic rearrangements is under intense investigation in research laboratories throughout the world.

Knowing that chromosome 22 was vulnerable to rearrangement, Dr. Jalal theorized that rearrangement would lead to deletion as often as it did duplication. "Surprisingly, there was no real evidence for this,’’ he says. Previously, only three cases of microduplication disorders have been described in medical literature.

Bob Nellis | EurekAlert!
Further information:
http://www.ajhg.org/AJHG/journal

More articles from Life Sciences:

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>