Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond biology: Simple system yields custom-designed proteins

31.10.2003


Technique could lead to new drugs as well as industrial processes



The diversity of nature may be enormous, but for Michael Hecht it is just a starting point.

Hecht, a Princeton professor of chemistry, has invented a technique for making protein molecules from scratch, a long-sought advance that will allow scientists to design the most basic building blocks of all living things with a variety of shapes and compositions far greater than those available in nature.


The technique, which Hecht developed over the last 10 years and validated in experiments to be published in November, could prove useful in a wide range of fields. Custom-designed proteins, for example, could become a source of new drugs or could form the basis of new materials that mimic the strength and resilience of natural substances.

The range of proteins present in nature, while great, has evolved only as far as the needs of biological organisms, said Hecht. "Why should we be limited by a mere few million proteins?" he said. "We can now not only ask what already exists in the biological world, but go beyond that and ask what might be possible."

Hecht and colleagues from Princeton and Rutgers University reported the advance in a paper to be published Nov. 11 in the Proceedings of the National Academy of Sciences. Co-authors of the article are former Princeton graduate student Yinan Wei and Rutgers chemistry professor Jean Baum and her colleagues Seho Kim and David Fela.

Nearly all the internal workings of living things are built from proteins. While genes are the "blueprints" for organisms, proteins are the products built from those instructions. The molecules that transmit signals in the brain, carry oxygen in the blood and turn genes on and off are all proteins.

Scientists have long wanted to design their own proteins, but doing so has proved a major challenge. Proteins are strings of chemical units called amino acids and are often more than 100 amino acids long. When cells make them, these long chains fold spontaneously into complex three-dimensional shapes that fit like puzzle pieces with other molecules and give proteins their unique abilities. There are 20 different amino acids, so the number of possible combinations is enormous. However, the vast majority of these combinations are useless because they cannot fold into protein-like structures.

The advance reported by Hecht and colleagues involves a simple system for designing amino acid sequences that fold like natural proteins. First publishing the idea in 1993, Hecht realized that some amino acids were strongly "water-loving" while others were "oil-loving." The two types naturally separate from each other, with the oil-loving ones clustering in the protein core and water-loving ones forming the perimeter. He also saw that natural proteins with good structures tend to have certain repeating patterns of oil-loving and water-loving amino acids. For example, taking a string of water-loving units -- no matter which ones -- and inserting any oil-loving unit every three or four positions typically creates proteins that fold into bundles of helices.

Hecht used this method to create a "library" of genes encoding millions of novel proteins, each designed to fold into a bundle of four helices. Initial tests of the library in the early 1990s showed that most of the proteins folded into compact arrangements, but these were "mushy," fluctuating shapes instead of well-ordered, rigid structures.

Hecht suspected that these proteins were simply too short to achieve a good structure and added amino acids to each sequence, making them 40 percent longer. In their latest findings, the researchers found that this new library contained well-folded proteins. They subjected one to a painstaking test -- a type of MRI for molecules -- and verified its three-dimensional structure. The experimentally determined structure closely matches that expected from the design.

The results are "quite important work," according to Jane Richardson, a biochemist at Duke University, and are a "direct demonstration of the importance of one simple and central factor in protein folding, which has not in the past been much emphasized in either the design or the folding fields."

Previously, the only ways for scientists to invent new proteins have been to churn out random sequences and screen them for well-folded proteins or to calculate, atom-by-atom, combinations that will fold into a desired shape. The first is difficult because there are too many combinations to try them all, said Hecht. Making every possible sequence of 100 amino acids would require more than all the atoms in universe, he said. The second, the calculation method, yields only one protein at a time.

Hecht’s method offers a middle ground because it limits the number of possible sequences to those that fit the correct oil-loving/water-loving patterns.

Having a rich variety of custom proteins may allow scientists to consider using them for tasks that do not exist in nature, such as catalyzing industrial chemical reactions, Hecht said. "Critters in nature haven’t been challenged to solve the technological problems we’re faced with today," he said. "If we are limited by what nature has given us, we are not going to tackle those problems."


Additional Contact: Joe Blumberg, Rutgers University,
732-932-7084 x652,
blumberg@ur.rutgers.edu

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>