Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond biology: Simple system yields custom-designed proteins

31.10.2003


Technique could lead to new drugs as well as industrial processes



The diversity of nature may be enormous, but for Michael Hecht it is just a starting point.

Hecht, a Princeton professor of chemistry, has invented a technique for making protein molecules from scratch, a long-sought advance that will allow scientists to design the most basic building blocks of all living things with a variety of shapes and compositions far greater than those available in nature.


The technique, which Hecht developed over the last 10 years and validated in experiments to be published in November, could prove useful in a wide range of fields. Custom-designed proteins, for example, could become a source of new drugs or could form the basis of new materials that mimic the strength and resilience of natural substances.

The range of proteins present in nature, while great, has evolved only as far as the needs of biological organisms, said Hecht. "Why should we be limited by a mere few million proteins?" he said. "We can now not only ask what already exists in the biological world, but go beyond that and ask what might be possible."

Hecht and colleagues from Princeton and Rutgers University reported the advance in a paper to be published Nov. 11 in the Proceedings of the National Academy of Sciences. Co-authors of the article are former Princeton graduate student Yinan Wei and Rutgers chemistry professor Jean Baum and her colleagues Seho Kim and David Fela.

Nearly all the internal workings of living things are built from proteins. While genes are the "blueprints" for organisms, proteins are the products built from those instructions. The molecules that transmit signals in the brain, carry oxygen in the blood and turn genes on and off are all proteins.

Scientists have long wanted to design their own proteins, but doing so has proved a major challenge. Proteins are strings of chemical units called amino acids and are often more than 100 amino acids long. When cells make them, these long chains fold spontaneously into complex three-dimensional shapes that fit like puzzle pieces with other molecules and give proteins their unique abilities. There are 20 different amino acids, so the number of possible combinations is enormous. However, the vast majority of these combinations are useless because they cannot fold into protein-like structures.

The advance reported by Hecht and colleagues involves a simple system for designing amino acid sequences that fold like natural proteins. First publishing the idea in 1993, Hecht realized that some amino acids were strongly "water-loving" while others were "oil-loving." The two types naturally separate from each other, with the oil-loving ones clustering in the protein core and water-loving ones forming the perimeter. He also saw that natural proteins with good structures tend to have certain repeating patterns of oil-loving and water-loving amino acids. For example, taking a string of water-loving units -- no matter which ones -- and inserting any oil-loving unit every three or four positions typically creates proteins that fold into bundles of helices.

Hecht used this method to create a "library" of genes encoding millions of novel proteins, each designed to fold into a bundle of four helices. Initial tests of the library in the early 1990s showed that most of the proteins folded into compact arrangements, but these were "mushy," fluctuating shapes instead of well-ordered, rigid structures.

Hecht suspected that these proteins were simply too short to achieve a good structure and added amino acids to each sequence, making them 40 percent longer. In their latest findings, the researchers found that this new library contained well-folded proteins. They subjected one to a painstaking test -- a type of MRI for molecules -- and verified its three-dimensional structure. The experimentally determined structure closely matches that expected from the design.

The results are "quite important work," according to Jane Richardson, a biochemist at Duke University, and are a "direct demonstration of the importance of one simple and central factor in protein folding, which has not in the past been much emphasized in either the design or the folding fields."

Previously, the only ways for scientists to invent new proteins have been to churn out random sequences and screen them for well-folded proteins or to calculate, atom-by-atom, combinations that will fold into a desired shape. The first is difficult because there are too many combinations to try them all, said Hecht. Making every possible sequence of 100 amino acids would require more than all the atoms in universe, he said. The second, the calculation method, yields only one protein at a time.

Hecht’s method offers a middle ground because it limits the number of possible sequences to those that fit the correct oil-loving/water-loving patterns.

Having a rich variety of custom proteins may allow scientists to consider using them for tasks that do not exist in nature, such as catalyzing industrial chemical reactions, Hecht said. "Critters in nature haven’t been challenged to solve the technological problems we’re faced with today," he said. "If we are limited by what nature has given us, we are not going to tackle those problems."


Additional Contact: Joe Blumberg, Rutgers University,
732-932-7084 x652,
blumberg@ur.rutgers.edu

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>