Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Not all aerial reptiles were level-headed, CT scans show


Inside view of pterosaurs’ brain yields insights to posture, behavior

With its 13-foot wing span, a flying dinosaur soars above a lake, scanning for dinner as its shadow glides across the water’s surface below. Eying a fish, the aerobatic reptile, called a pterosaur, dives through the air, its shadow shrinking and darkening until – splash! The fish is in the pterosaur’s beak, which resembles a cross between a pelican’s bill and a crocodile’s snout.

While such a scene would have occurred more than 100 million years ago, a study released this week gives a clearer picture of what went on inside the pterosaur’s head. When scientists using skull fossils examined the neuroanatomy responsible for flight control and prey spotting, they found key structures to be specialized and enlarged, a discovery that could revise views of how vision, flight, and the brain itself evolved.

The researchers, led by Lawrence Witmer of Ohio University, took a high-tech look through two skulls of separate species of pterosaurs. Using computerized images derived from X-rays, they peered into the vestibular apparatus, the passageways and chambers responsible for maintaining equilibrium. They also dove "virtually" into the brain cavity to analyze the regions responsible for coordinating wing movements, for scanning the environment, and for "stabilizing gaze," a necessity for airborne predators.

The scientists report their findings in the Oct. 30 issue of the journal Nature. The research team also included Sankar Chatterjee of the Museum of Texas Tech University and Jonathan Franzosa and Timothy Rowe from the University of Texas (UT) at Austin. The trio put the two skulls through the scanner at UT’s High-Resolution X-ray Computed Tomography Facility.

The research was supported by the Division of Integrative Biology and Neurosciences of the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

According to William Zamer, who directs NSF’s Ecological and Evolutionary Physiology program, "It is a beautifully integrative study: It uses paleontological information, state-of-the-art technology to reconstruct the brain anatomies, and existing knowledge of the working of the semicircular canals to draw fascinating inferences about how these organisms may have performed when they were alive."

Some differences between the two pterosaurs were outwardly apparent.

The skull of Rhamphorhynchus muensteri, a species found in Jurassic formations in Germany, is about five inches long. From its broad back, the skull tapers steadily to a pointed beak.

The skull of Anhanguera santanae, found in the Cretaceous deposits of Brazil, is almost two feet long. Narrower and triangular in cross-section, it tapers toward both the front and the back.

"Anhanguera was quadrupedal and didn’t walk solely on its back feet," says Witmer. "It had long forelimbs, though, and so was canted into a more upright position than was the shorter-armed Rhamphorhynchus."

Its head hung at a downward slant, which, according to Witmer, likely enhanced its binocular vision and terrestrial agility.

"The major evidence for the down-turned head," he says, "comes from the orientation of the inner ear canals."

Those, however, remain deep within Anahanguera’s rock head, visible only virtually.

To examine the skulls’ chambers encased within the mineralized fossils, the researchers used non-invasive X-ray computerized axial tomography – more commonly known as "CAT scans." Custom-built to explore the internal structure of natural – and often fossilized – objects, the scanner at the UT facility has greater resolution and penetrating power than a conventional medical-diagnostic CAT scanner. It feeds its data to DigiMorph, an NSF-funded digital library that develops and makes available 2-D and 3-D structural visualizations of living and extinct animals, mostly vertebrates.

DigiMorph turned the scanners’ deep and detailed views into digitized "virtual" endocasts, which revealed more differences between the vestibular networks in the two skulls. For example, the orientation of this "osseous labyrinth" relative to the long axis of the skulls varied. This is particularly noteworthy because of the semicircular canals. These fluid-filled chambers serve as levels to help the brain determine which way is up, arrange an appropriate rate of acceleration, and maintain equilibrium. (All vertebrates have them in their inner ears.)

In Rhamphorhynchus, the orientation of the canals suggests a level-headed approach to flying. In Anhanguera, it suggests a head turned strongly downward both in flight and when on the ground.

Both extinct pterosaurs had about twice the relative amount of labyrinth space than do living birds. (Birds, likewise, have enlarged labyrinths relative to mammals.)

The researchers also found in both animals another greatly enlarged neurological structure critical to flight. Called the flocculus, this lobe of the cerebellum has important connections with the vestibular apparatus, the eye muscles and neck muscles, which work together to stabilize and sharpen an image of prey upon the retina.

The flocculus may also connect to the membrane covering the wing, gathering massive amounts of sensory input on body orientation amidst aerodynamic forces. In both pterosaur subjects, the flocculi occupy about 7.5 percent of total brain mass; in birds, they occupy about 2 percent or less.

According to the Nature report, "Enhancement of such mechanisms seems reasonable in these two visually oriented pterosaurs given their apparent foraging style of aerial fish-eating."

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Sean Kearns | National Science Foundation
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>