Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who moved my cheese!?

21.10.2003


Researchers find that ’one sniff will do’ for odor discrimination



Rats inhabit a world of smells far beyond our poor powers to discriminate. Thousands of odors that smell the same to us, or that we cannot perceive at all, are quickly recognizable as distinct and meaningful odors to rodents and other animals in which the Nose Knows. But just how quick?

By measuring the speed of smell, researchers at Cold Spring Harbor Laboratory have now found that unlike humans, rats can tell two very similar odors apart with just one sniff. And because it’s not the Nose that Knows, but rather the brain, such studies of how animals can rapidly and accurately discriminate odors are revealing vital new information about how the human brain processes information, guides behavior, and even enables us to be consciously aware of our own (though less smelly) world, and our own selves.


"We are trying to understand how systems of neurons participate in the creation of perception, awareness, and behavior," says Cold Spring Harbor Laboratory neuroscientist Zach Mainen, who led the new study.

By exploring the neural mechanisms by which rodents use odors to guide their behavior, Mainen and his colleagues hope to uncover basic principles of brain function that will apply in many settings, including how our own brains work. But to get there, they needed to start out by measuring seemingly strange things such as how many sniffs a rat takes per second. The answer, according to the new study: about eight sniffs per second.

Believe it or not, the "eight sniffs per second" measurement has helped resolve a hotly debated issue in neuroscience. Researchers have previously suggested that the brain requires extra processing time to distinguish among the millions of different chemical signals that can be picked up by the nose. The new study, which appears in the November issue of Nature Neuroscience (advance online publication date: October 20), overturns this conventional wisdom that smell is a slow sense.

"We found that a rat gets a complete sense of an odor with each sniff. So the animal can reassess what it’s smelling quite rapidly, and alter its behavior accordingly. Therefore, compared with other forms of sensory perception, smell is a fast sense, not a slow one," says Mainen.

"Humans are far more attuned to the visual world, but the computations our brains carry out are probably not all that different than in rodents. The neural mechanisms that enable rodents to identify an odor in a single sniff are probably similar to those that help us take in an entire visual scene in a single glance. Moreover, the brains of both rats and humans display the same kind of rhythmic, information processing activity called a theta cycle, which controls many things."

Mainen and his colleagues are currently recording electrical signals from neurons in the brains of rats as they perform the odor discrimination task (see Background Information below). In this way, the researchers hope to learn more about information processing in the olfactory system, and to explore the neural basis of perception, decision-making, and other aspects of behavior.


###
Contact information for the Principle Investigator of the study:

Zach Mainen, Ph.D.
Assistant Professor
Cold Spring Harbor Laboratory
e-mail: mainen@cshl.edu
tel: 516-367-8822

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu/public/SCIENCE/mainen.html

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>