Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who moved my cheese!?

21.10.2003


Researchers find that ’one sniff will do’ for odor discrimination



Rats inhabit a world of smells far beyond our poor powers to discriminate. Thousands of odors that smell the same to us, or that we cannot perceive at all, are quickly recognizable as distinct and meaningful odors to rodents and other animals in which the Nose Knows. But just how quick?

By measuring the speed of smell, researchers at Cold Spring Harbor Laboratory have now found that unlike humans, rats can tell two very similar odors apart with just one sniff. And because it’s not the Nose that Knows, but rather the brain, such studies of how animals can rapidly and accurately discriminate odors are revealing vital new information about how the human brain processes information, guides behavior, and even enables us to be consciously aware of our own (though less smelly) world, and our own selves.


"We are trying to understand how systems of neurons participate in the creation of perception, awareness, and behavior," says Cold Spring Harbor Laboratory neuroscientist Zach Mainen, who led the new study.

By exploring the neural mechanisms by which rodents use odors to guide their behavior, Mainen and his colleagues hope to uncover basic principles of brain function that will apply in many settings, including how our own brains work. But to get there, they needed to start out by measuring seemingly strange things such as how many sniffs a rat takes per second. The answer, according to the new study: about eight sniffs per second.

Believe it or not, the "eight sniffs per second" measurement has helped resolve a hotly debated issue in neuroscience. Researchers have previously suggested that the brain requires extra processing time to distinguish among the millions of different chemical signals that can be picked up by the nose. The new study, which appears in the November issue of Nature Neuroscience (advance online publication date: October 20), overturns this conventional wisdom that smell is a slow sense.

"We found that a rat gets a complete sense of an odor with each sniff. So the animal can reassess what it’s smelling quite rapidly, and alter its behavior accordingly. Therefore, compared with other forms of sensory perception, smell is a fast sense, not a slow one," says Mainen.

"Humans are far more attuned to the visual world, but the computations our brains carry out are probably not all that different than in rodents. The neural mechanisms that enable rodents to identify an odor in a single sniff are probably similar to those that help us take in an entire visual scene in a single glance. Moreover, the brains of both rats and humans display the same kind of rhythmic, information processing activity called a theta cycle, which controls many things."

Mainen and his colleagues are currently recording electrical signals from neurons in the brains of rats as they perform the odor discrimination task (see Background Information below). In this way, the researchers hope to learn more about information processing in the olfactory system, and to explore the neural basis of perception, decision-making, and other aspects of behavior.


###
Contact information for the Principle Investigator of the study:

Zach Mainen, Ph.D.
Assistant Professor
Cold Spring Harbor Laboratory
e-mail: mainen@cshl.edu
tel: 516-367-8822

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu/public/SCIENCE/mainen.html

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>