Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences in termite castes may lead to better control

21.10.2003


Termite colonies, such as this one collected on the Purdue campus, are helping researchers like Michael Scharf develop ways to control the pest. Scharf is an entomology research professor and director of the Purdue Industrial Affiliates Program in the Center for Urban and Industrial Pest Management. (Purdue Agricultural Communications photo/Tom Campbell)


Learning the molecular processes that cause termite larvae to grow into workers, soldiers or reproductive adults may lead to new methods to decimate colonies of the wood-eaters, according to Purdue University researchers.

The scientists identified 25 genes that provide some of the first information concerning the differentiation of the insects based on the role they play within a colony. The study, published in this month’s issue of the journal Genome Biology (http://genomebiology.com/2003/4/10/R62), shows that the level at which some of the newly discovered genes are expressed differs depending on which adult form the termite becomes.

"Many of the genes we found are involved in muscle function," said Michael Scharf, entomology research professor and lead author of the study. "Most of these muscle proteins are expressed in the soldiers and not the workers. The soldiers have big heads and jaws, so they require more muscle in the head to drive those jaws.



"But soldiers don’t have wings, so they don’t have flight muscles as are found in the developing nymphs, which become winged reproductive adults."

Though possibly hundreds of termite species exist around the world that are different sizes and live in different types of colonies, they all have similarities. They all eat wood or woody plants high in cellulose. They are very social and form monogamous relationships in which a new king and queen fly away from the original colony to form a new one. Termite larvae can become a member of any of three castes – soldiers, workers and the nymphs that develop into alates, or reproductively mature males and females.

The soldiers guard the colony but can’t reproduce, fly or feed themselves. Workers feed the other termites, tend the larvae and young insects, and dig tunnels. The alates can fly and reproduce.

"Termites have a hormone, called juvenile hormone, that is very important to insects during their development," said Scharf, also director of the Purdue Industrial Affiliates Program in the Center for Urban and Industrial Pest Management. "When they are immature they have this hormone, but when it’s gone they molt for a final time and become adults. In termites, the adults are the reproductive individuals that replenish the colony with new members."

Scharf and his team found that if they treated worker termites with juvenile hormone, they became soldiers. They also found that in normal colonies some nymphs begin to develop eyes, wings and reproductive anatomy, but also can regress into workers by molting backwards and losing their eyes, wing pads and their reproductive characteristics.

"If we could modify proteins in termites to change workers into helpless soldiers, then we could make 75 percent of the colony soldiers," he said. "That would be pretty lethal to the termites but have minimal environmental impact."

Since the alates and the soldiers can’t feed themselves or dig tunnels, and the workers and soldiers can’t reproduce, the termites would die off fairly quickly, Scharf said.

The researchers found that workers have high levels of four genes that produce enzymes for breaking down cellulose into digestible sugars. Cellulose is the substance that makes up the structure of plants; the enzymes that break down the cellulose are called cellulases. Two of these four genes produce cellulases in the termites. The other two are from microbes in the termites’ digestive system. These bacteria aid in metabolizing the food.

The Purdue scientists also found a number of termite genes related to ones found in the common research insect, Drosophila. Some of these genes also may be similar, or homologous, to development genes in other animals.

Mutation of one of these related genes causes Drosophila, or fruit flies, to have two lower halves and no head. The related gene in termites is found at higher levels in the soldiers, Scharf said. This mutation, fatal in fruit flies, may explain why soldier termites’ heads and bodies are almost the same size.

"Our research is teaching us about termite biology and development – how they diverge into their different forms, create a colony and exploit their environment, which quite often could be somebody’s house," Scharf said. "What we have learned so far is just the tip of the iceberg."

Termites found in many areas of the United States are Reticulitermes flavipes, a species of lower termites. Lower termites are subterranean, meaning they live below ground and in wood. These are about the size of a ballpoint pen tip. Higher termites, which aren’t found in the continental United States, are much bigger and build large mounds above the ground.

Termites are often mistaken for ants, however, there are some easy ways to tell the difference. Termites have straight antenna and an oval or oblong body, and those with wings have two pairs of equal length. Ants have antenna that bend at a 90-degree angle, a pinched-in abdomen and those with wings have front wings that are much longer than the back pair.

According to experts, the first known termites evolved about 100 million years ago when dinosaurs existed. They came from the same ancestors as wood-dwelling cockroaches.

The other researchers involved with this study were research scientist Dancia Wu-Scharf, assistant professor Barry Pittendrigh and professor Gary Bennett, all of the Purdue Department of Entomology.

The Center for Urban and Industrial Pest Management Industrial Affiliates Program and the Office of the Vice President of Agricultural Research provided funding for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Michael Scharf, (765) 494-6314, mike_scharf@entm.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://genomebiology.com/2003/4/10/R62
http://news.uns.purdue.edu/UNS/html4ever/031020.Scharf.termites.html
http://www.entm.purdue.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>