Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temple study identifies molecular mechanisms that may assist gene in blocking lung cancer

09.10.2003


Dr Antonio Giordano, director of the Sbarro Institute for Cancer Research and Molecular Medicine based at Temple University.
Photo Credit: Joseph V. Labolito


The molecular mechanisms that may assist the tumor suppressing gene Rb2/p130 in blocking the progression of lung cancer cells has been clearly identified for the first time according to a study by researchers at Temple University’s Sbarro Institute for Cancer Research and Molecular Medicine.

The results of their study, "pRb2/p130 target genes in non-small cell lung cancer cells identified by microarray analysis," appear in the Oct. 9 issue of Oncogene (http://www.nature.com/onc/).

The study, led by Antonio Giordano, M.D., Ph.D., head of the Sbarro Institute at Temple, was a follow-up to previous experiments led by Giordano that demonstrated an inverse relationship between Rb2 expression and the aggressiveness of lung cancer. Giordano discovered the Rb2 gene while working at Temple’s Fels Cancer Institute in the early 1990s. In those earlier studies, correct copies of Rb2 were introduced into mice with lung tumors using a viral system developed by Pier Paolo Claudio, M.D., Ph.D., associate professor of biotechnology at the Sbarro Institute. When the Rb2 gene was over-expressed in the cancer cells, it caused the tumors in the mice to completely regress(http://jncicancerspectrum.oupjournals.org/jnci/content/vol90/issue19).



"In this study, we wanted to understand the molecular mechanisms behind Rb2/p130 tumor growth inhibition," says Giuseppe Russo, Ph.D., a post doctoral fellow at the Sbarro Institute and the study’s lead author. "We wanted to know what this gene does in lung cancer cells, what other genes it may target, and how it controls cell regulation.

"It’s like this molecular process of tumor regression is a movie and Rb2 is the lead actor," Giordano adds. "What we wanted to know is who the supporting cast is."

After introducing correct copies of Rb2 into H23 lung cancer cells via Claudio’s viral shuttle, the researchers used customized microarray analysis to examine the simultaneous expression of thousands of genes within the cancer cell. Microarray is a powerful new tool that allows researchers to study the molecular basis of interactions on a scale that had been impossible using conventional methods.

"Through the use of the microarray, we were able to see which genes were over-expressed or under-expressed because of the enhanced Rb2 gene expression," says Giordano. "This is the first time that we have been able to clearly identify the genes that were being regulated by the Rb2 expression in lung cancer cells."

Some of the nearly 70 regulated genes that were identified through this study were previously known to be involved in the progression of lung cancer, says Giordano, meaning that the researchers were able to confirm previously published data. "But many of the identified genes were not previously known to be involved in lung cancer or be regulated by Rb2," he adds. The Temple researchers believe that identifying these genes could play an important role in developing future gene therapies to diagnose and treat lung cancer.

"Any regulation in a gene that is found to be caused by Rb2 is important to us because we can then study why that gene is regulated and use that information to develop molecular therapeutic approaches to lung cancer," says Giordano. "The gene expression profiles provided by microarray analysis will someday help tailor specific gene therapies to individual patients." Lung cancer is the leading cause of cancer death worldwide and is usually diagnosed at an incurable stage, most likely due to the absence of effective therapies as well as standard diagnostic procedures of early tumoral stages when compared with other cancers types, such as colon, breast and prostate cancers.

The study was funded by the National Institutes of Health and the Sbarro Health Research Organization.

Preston M. Moretz | Temple University
Further information:
http://www.nature.com/onc
http://jncicancerspectrum.oupjournals.org/jnci/content/vol90/issue19

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>