Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa scientists detail salmonella protein

26.09.2003


A protein in Salmonella bacteria called SipA invades healthy human cells by using two arms in a "stapling" action, according to scientists at the University of Virginia Health System. The U.Va. researchers, working with colleagues at Rockefeller University in New York, report their findings in the September 26 edition of the magazine Science.


Edward Egelman, professor of biochemistry and molecular genetics at U.Va., said the significance of this research is that it could be possible to design molecules to prevent SipA from binding to a protein called actin, preventing the severe infection associated with Salmonella.

According to the Centers for Disease Control and Prevention, various types of the Salmonella bacteria are responsible for up to four million infections and 500 deaths in the United States every year. Salmonella can cause diarrhea, fever and abdominal cramps. Most people recover without treatment, but young children, the elderly and people with compromised immune systems are at risk for developing severe infections. There is no vaccine to prevent Salmonella-related sickness.

Egelman and his colleagues found that SipA works as a molecular "staple" and tethers itself to actin, a protein found in all human cells. SipA can polymerize actin into long filaments.



This activity may explain how this bacterial protein helps rearrange a cell’s cytoskeleton, or the inner scaffold that gives a cell shape and provides motility. By remodeling the cytoskeleton of host cells, bacterial proteins such as SipA allow the Salmonella bacteria to infect these cells.

"This is a cunning evolutionary pathway that has developed with Salmonella," Egelman said. "It has the interesting property of being able to control the host actin filaments by using arms to do it. It has actually evolved, we believe, to mimic human proteins that bind to actin. This allows Salmonella to become a Trojan horse of sorts, causing healthy cells to engulf the Salmonella bacteria."

Research teams at U.Va. and Rockefeller University used an electron microscope, x-ray crystallography and 3-D reconstruction to image the SipA protein. They found that the molecule is unexpectedly compact, heart shaped, with a globular core, flexible polypeptide extensions and a large patch that may help SipA bind to the mostly acidic surface of actin.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news
http://www.sciencemag.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>