UVa scientists detail salmonella protein

A protein in Salmonella bacteria called SipA invades healthy human cells by using two arms in a “stapling” action, according to scientists at the University of Virginia Health System. The U.Va. researchers, working with colleagues at Rockefeller University in New York, report their findings in the September 26 edition of the magazine Science.

Edward Egelman, professor of biochemistry and molecular genetics at U.Va., said the significance of this research is that it could be possible to design molecules to prevent SipA from binding to a protein called actin, preventing the severe infection associated with Salmonella.

According to the Centers for Disease Control and Prevention, various types of the Salmonella bacteria are responsible for up to four million infections and 500 deaths in the United States every year. Salmonella can cause diarrhea, fever and abdominal cramps. Most people recover without treatment, but young children, the elderly and people with compromised immune systems are at risk for developing severe infections. There is no vaccine to prevent Salmonella-related sickness.

Egelman and his colleagues found that SipA works as a molecular “staple” and tethers itself to actin, a protein found in all human cells. SipA can polymerize actin into long filaments.

This activity may explain how this bacterial protein helps rearrange a cell’s cytoskeleton, or the inner scaffold that gives a cell shape and provides motility. By remodeling the cytoskeleton of host cells, bacterial proteins such as SipA allow the Salmonella bacteria to infect these cells.

“This is a cunning evolutionary pathway that has developed with Salmonella,” Egelman said. “It has the interesting property of being able to control the host actin filaments by using arms to do it. It has actually evolved, we believe, to mimic human proteins that bind to actin. This allows Salmonella to become a Trojan horse of sorts, causing healthy cells to engulf the Salmonella bacteria.”

Research teams at U.Va. and Rockefeller University used an electron microscope, x-ray crystallography and 3-D reconstruction to image the SipA protein. They found that the molecule is unexpectedly compact, heart shaped, with a globular core, flexible polypeptide extensions and a large patch that may help SipA bind to the mostly acidic surface of actin.

Media Contact

Bob Beard EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors