Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa scientists detail salmonella protein

26.09.2003


A protein in Salmonella bacteria called SipA invades healthy human cells by using two arms in a "stapling" action, according to scientists at the University of Virginia Health System. The U.Va. researchers, working with colleagues at Rockefeller University in New York, report their findings in the September 26 edition of the magazine Science.


Edward Egelman, professor of biochemistry and molecular genetics at U.Va., said the significance of this research is that it could be possible to design molecules to prevent SipA from binding to a protein called actin, preventing the severe infection associated with Salmonella.

According to the Centers for Disease Control and Prevention, various types of the Salmonella bacteria are responsible for up to four million infections and 500 deaths in the United States every year. Salmonella can cause diarrhea, fever and abdominal cramps. Most people recover without treatment, but young children, the elderly and people with compromised immune systems are at risk for developing severe infections. There is no vaccine to prevent Salmonella-related sickness.

Egelman and his colleagues found that SipA works as a molecular "staple" and tethers itself to actin, a protein found in all human cells. SipA can polymerize actin into long filaments.



This activity may explain how this bacterial protein helps rearrange a cell’s cytoskeleton, or the inner scaffold that gives a cell shape and provides motility. By remodeling the cytoskeleton of host cells, bacterial proteins such as SipA allow the Salmonella bacteria to infect these cells.

"This is a cunning evolutionary pathway that has developed with Salmonella," Egelman said. "It has the interesting property of being able to control the host actin filaments by using arms to do it. It has actually evolved, we believe, to mimic human proteins that bind to actin. This allows Salmonella to become a Trojan horse of sorts, causing healthy cells to engulf the Salmonella bacteria."

Research teams at U.Va. and Rockefeller University used an electron microscope, x-ray crystallography and 3-D reconstruction to image the SipA protein. They found that the molecule is unexpectedly compact, heart shaped, with a globular core, flexible polypeptide extensions and a large patch that may help SipA bind to the mostly acidic surface of actin.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news
http://www.sciencemag.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>