Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UVa scientists detail salmonella protein


A protein in Salmonella bacteria called SipA invades healthy human cells by using two arms in a "stapling" action, according to scientists at the University of Virginia Health System. The U.Va. researchers, working with colleagues at Rockefeller University in New York, report their findings in the September 26 edition of the magazine Science.

Edward Egelman, professor of biochemistry and molecular genetics at U.Va., said the significance of this research is that it could be possible to design molecules to prevent SipA from binding to a protein called actin, preventing the severe infection associated with Salmonella.

According to the Centers for Disease Control and Prevention, various types of the Salmonella bacteria are responsible for up to four million infections and 500 deaths in the United States every year. Salmonella can cause diarrhea, fever and abdominal cramps. Most people recover without treatment, but young children, the elderly and people with compromised immune systems are at risk for developing severe infections. There is no vaccine to prevent Salmonella-related sickness.

Egelman and his colleagues found that SipA works as a molecular "staple" and tethers itself to actin, a protein found in all human cells. SipA can polymerize actin into long filaments.

This activity may explain how this bacterial protein helps rearrange a cell’s cytoskeleton, or the inner scaffold that gives a cell shape and provides motility. By remodeling the cytoskeleton of host cells, bacterial proteins such as SipA allow the Salmonella bacteria to infect these cells.

"This is a cunning evolutionary pathway that has developed with Salmonella," Egelman said. "It has the interesting property of being able to control the host actin filaments by using arms to do it. It has actually evolved, we believe, to mimic human proteins that bind to actin. This allows Salmonella to become a Trojan horse of sorts, causing healthy cells to engulf the Salmonella bacteria."

Research teams at U.Va. and Rockefeller University used an electron microscope, x-ray crystallography and 3-D reconstruction to image the SipA protein. They found that the molecule is unexpectedly compact, heart shaped, with a globular core, flexible polypeptide extensions and a large patch that may help SipA bind to the mostly acidic surface of actin.

Bob Beard | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>