Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa scientists detail salmonella protein

26.09.2003


A protein in Salmonella bacteria called SipA invades healthy human cells by using two arms in a "stapling" action, according to scientists at the University of Virginia Health System. The U.Va. researchers, working with colleagues at Rockefeller University in New York, report their findings in the September 26 edition of the magazine Science.


Edward Egelman, professor of biochemistry and molecular genetics at U.Va., said the significance of this research is that it could be possible to design molecules to prevent SipA from binding to a protein called actin, preventing the severe infection associated with Salmonella.

According to the Centers for Disease Control and Prevention, various types of the Salmonella bacteria are responsible for up to four million infections and 500 deaths in the United States every year. Salmonella can cause diarrhea, fever and abdominal cramps. Most people recover without treatment, but young children, the elderly and people with compromised immune systems are at risk for developing severe infections. There is no vaccine to prevent Salmonella-related sickness.

Egelman and his colleagues found that SipA works as a molecular "staple" and tethers itself to actin, a protein found in all human cells. SipA can polymerize actin into long filaments.



This activity may explain how this bacterial protein helps rearrange a cell’s cytoskeleton, or the inner scaffold that gives a cell shape and provides motility. By remodeling the cytoskeleton of host cells, bacterial proteins such as SipA allow the Salmonella bacteria to infect these cells.

"This is a cunning evolutionary pathway that has developed with Salmonella," Egelman said. "It has the interesting property of being able to control the host actin filaments by using arms to do it. It has actually evolved, we believe, to mimic human proteins that bind to actin. This allows Salmonella to become a Trojan horse of sorts, causing healthy cells to engulf the Salmonella bacteria."

Research teams at U.Va. and Rockefeller University used an electron microscope, x-ray crystallography and 3-D reconstruction to image the SipA protein. They found that the molecule is unexpectedly compact, heart shaped, with a globular core, flexible polypeptide extensions and a large patch that may help SipA bind to the mostly acidic surface of actin.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news
http://www.sciencemag.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>