Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earliest European modern humans found

23.09.2003


A research team co-directed by Erik Trinkaus, professor of anthropology at Washington University in St. Louis, has dated a human jawbone from a Romanian bear hibernation cave to between 34,000 and 36,000 years ago. That makes it the earliest known modern human fossil in Europe.


Jawbone, temporal bone and facial skeleton from early Europeans



Other human bones from the same cave -- a temporal bone, a facial skeleton and a partial braincase -- are still undergoing analysis, but are likely to be the same age. The jawbone was found in February 2002 in Pestera cu Oase, the "Cave with Bones," located in the southwestern Carpathian Mountains. The other bones were found in June 2003.

The results on the jawbone will be published the week of Sept. 22 in the Proceedings of the National Academy of Science (PNAS; www.pnas.org) Online Early Edition. A report on the other bones will appear in an upcoming issue of the Journal of Human Evolution (www.sciencedirect.com). The finds should shed much-needed light on early modern human biology.


"The jawbone is the oldest directly dated modern human fossil," said Trinkaus, the Mary Tileston Hemenway Professor of Anthropology. "Taken together, the material is the first that securely documents what modern humans looked like when they spread into Europe. Although we call them ’modern humans,’ they were not fully modern in the sense that we think of living people."

To determine the fossils’ implications for human evolution, Trinkaus and colleagues performed radiocarbon dating of the jawbone (dating of the other remains is in progress) and a comparative anatomical analysis of the sample. The jawbone dates from between 34,000 and 36,000 years ago, placing the specimens in the period during which early modern humans overlapped with late surviving Neandertals in Europe.

Most of their anatomical characteristics are similar to those of other early modern humans found at sites in Africa, in the Middle East and later in Europe, but certain features, such as the unusual molar size and proportions, indicate their archaic human origins and a possible Neandertal connection.

The researchers document that these early modern humans retained some archaic characteristics, possibly through interbreeding with Neandertals. Nevertheless, because few well-dated remains from this period have been found, the fossil remains help to fill in an important phase in modern human emergence.

"The specimens suggest that there have been clear changes in human anatomy since then," said Trinkaus. "The bones are also fully compatible with the blending of modern human and Neandertal populations. Not only is the face very large, but so are the jaws and the teeth, particularly the wisdom teeth. In the human fossil record, you have to go back a half-million years to find a specimen that has bigger wisdom teeth."

The jawbone was found by three Romanian cavers, who contacted Oana Moldovan, director of the Institutul de Speologie, a cave research institute in Cluj, Romania. Moldovan in turn, recognizing the importance of the jawbone, contacted Trinkaus.

The two met in Europe in May 2002, and Trinkaus brought the jawbone temporarily to Washington University for analysis. Trinkaus, Moldovan, the cavers and Ricardo Rodrigo, a Portuguese archaeologist, returned to the cave in June 2003 to produce a map and survey the cave’s surface. In the process, the cavers and Rodrigo found the facial skeleton, temporal bone and other pieces that are now undergoing analysis.

Since then, Trinkaus and Moldovan have assembled an international team to document and excavate the cave and analyze the material after it comes out from the cave. The cave was primarily used for bear hibernation. It is not known how the human bones got into the cave, but Trinkaus says one possibility is that early humans used the cave as a mortuary cave for the ritual disposal of human bodies. Some of the bear bones were rearranged by humans, documenting past human activities in the cave.

"The jaw was originally found sitting by itself; the material this summer was found mixed up with bear bones," Trinkaus said. "After they found the face, they collected everything on the surface that might be human, packaged it up and brought it out of the cave. Some of the pieces that they carried out of the cave are, in fact, bear. We know that more of the skull is in the same place, but it was buried or not recognized at the time."

The team plans to return to Romania next summer to continue the scientific analysis of the cave and its contents.

Susan Killenberg McGinn | EurekAlert!
Further information:
http://www.wustl.edu/
http://www.pnas.org
http://www.sciencedirect.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>