Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes discovered that regulate blood stem cell development

19.09.2003


Studies in zebrafish lead to better understanding of blood formation and leukemia development



Researchers at Children’s Hospital Boston have isolated a gene responsible for making blood stem cells. The findings appear in today’s issue of the journal Nature. The gene, called cdx4, is responsible for establishing the location of blood cell formation in the developing embryo. Cdx4 works by altering the expression of HOX genes, which are involved in making the body plan. Surprisingly, the authors found that overexpression of cdx4 in zebrafish embryos, or in mouse embryonic stem cells, induces the new production of early blood cells. "We have been searching for genes in the zebrafish that participate in making blood stem cells," according to lead author, Leonard Zon, MD., of Children’s Hospital Boston. "Now that we have these genes, we are one step closer to growing more blood stem cells. This will be potentially useful for patients with severe congenital anemias or bone marrow transplantation for cancer," adds Zon.

Scientists studied a mutant that had a severe anemia because it had few blood stem cells, and also had a tail defect. The zebrafish mutants generally die within seven to ten days after fertilization. They discovered the mutation in the cdx4 gene, which is associated with the early blood deficiency as well as abnormal developmental patterning, including aberrant hox gene expression. When researchers injected the mutants with hox genes, such as hoxb7a and hoxa9a, it resulted in almost complete rescue of the deficient blood cells. Another hox gene, hoxb6b showed some improvement, but hoxb8a did not have any effect on the blood defect. Researchers believe this shows blood cell development is dependent on the proper expression of these hox genes, and that overexpression of these genes can reverse a fatal deficiency in these blood cells. "These zebrafish findings will allow us to better understand normal blood development, with the hopes of eventually developing more effective treatments for these devastating blood disorders such as leukemia," says Zon.


Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for over 100 years. More than 500 scientists, including seven members of the National Academy of Sciences, nine members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Founded in 1869 as a 20-bed hospital for children, Children’s Hospital Boston today is a 300-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. It is also the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital visit: www.childrenshospital.org.


Mary-Ellen Shay | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>