Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mind games: Rescuing human survival from the maelstrom of everyday change

15.09.2003



The meaning and nature of change is a question that has fascinated some of the world’s greatest minds since long before the birth of Christ. Today, legions of philosophers and hosts of cognitive scientists continue to work to resolve what may be one of the world’s greatest paradoxes: How is it that change and constancy coexist in the world and in the human mind? Binghamton University Professor Eric Dietrich is sure of at least one thing. Our creativity, and likely our very survival, depends on the fact that they somehow do.

Imagine having no memory in a world rife with change. Everything and everyone is brand new to you at every moment. You don’t recognize family members. You don’t recognize your surroundings. You don’t recognize that you are the same person you were as a child…or even last week. You don’t know whether things are safe to eat or drink, or what the darkening sky and blustering winds might foreshadow. No past. No future. Just a totally confounding present in which the word "change" has lost all relevance and meaning because that’s all there is. If the scenario is unnerving, that’s likely because it would probably mean the end of life as we know it.

"Without a some thread of constancy," agrees Eric Dietrich, a cognitive scientist and philosopher of the mind, "we’d be toast."



According to Dietrich, what actually happens for most of us is that change and constancy engage in a mysterious and symbiotic dance-a reel in which the two alternate the lead, working separately and in collaboration to inform our perceptions and interpretations of the world around us. Fortuitously, this results in a whole significantly greater than the sum of the parts. It also points to the kind of emergent properties that continue to fuel cognitive studies and perplex cognitive scientists, Dietrich said.

"You’ve got a whole bunch of neurons doing their thing in the brain," he said. "What individual neurons do is very sophisticated. But it’s nothing compared to what a whole human can do."

Somehow, new and unpredictable properties emerge from the system-and a brain becomes part but not parcel of a mind.

"You get all these neurons doing their thing and somehow you end up with a language- speaking human engaged in trying to establish world peace," he said. "That’s a little hard to predict from neuronal activity in the brain. We couldn’t even predict consciousness from the neuronal activity in the brain."

Still it is minds, after all, that keep an ever-changing world from utter chaos most philosophers now agree.

"The world is constantly changing, but humans stamp constancy on it with their minds." Dietrich said. "Minds make an ever-changing world somewhat constant. But no one is really sure how we manage to pull it off."

"Look at the computer," he said. "Twenty years ago, it was huge. Now it’s tiny." He eventually hopes to create what he calls a "lab on a chip," by shrinking down all of the equipment in a chemistry lab to the size of computer chips. Smaller equipment not only uses fewer resources, he said, but creates less waste.

How is it that we develop and sustain the kind of constancy that is critical to learning, relationships and very possibly our basic sanity and survival in an ever changing world?

Dietrich thinks the answer might be found in analogy and abstraction, both of which are at the heart of his current research interests. Analogy depends on and is characterized by an ability to draw similarities between things that are dissimilar. Abstraction is the act of developing a general sense or gist notion from many specific pieces of information, he said. He is working in both areas through the development of algorithms to inform the development of artificial intelligence and his studies of cognition and the human mind.

In 1909, when it suddenly occurred to Ernest Rutherford that electrons must hold the negative charge of atoms and that they must also orbit the nucleus "like planets around the sun," Rutherford was abstracting from bits of data before him and drawing an analogy between a familiar or "constant" idea and an observed phenomenon or perception to arrive at a brand new concept, Dietrich said. Though analogy research is a great success story in cognitive science, Dietrich said researchers are still a long way from building a machine that can spontaneously do what Rutherford did.

"We have artificial neural networks that do a good job of perceptual abstraction. They can look at your face and my face and despite the obvious differences, they can abstract the notion of face," he said. " We even have machines-Deep Blue-that can sometimes beat world chess champions. But at the end of the game (Garry) Kasparov can stand up and go home. He can tie his shoes. He can make pasta. He can have a conversation."

When the game’s over for Deep Blue, on the other hand, the game is truly over. Deep Blue will not be sitting down over a glass of wine to discuss the "thinking" that led up to some critical move during the game.

"It can’t do that," Dietrich said. "It’s like a mousetrap."

Dietrich thinks his work helps to demonstrate that abstraction and analogy are key to the problem of constancy with change. He also hopes to learn more about how both relate to the kind of human creativity and artificial intelligence that will fuel the most promising nanoscale changes of the future, he said.

"It’s one thing to know the actual string of bases in the human genome," Dietrich said. "It’s another thing to know what to do with that information."

Susan E. Barker | Binghamton University
Further information:
http://research.binghamton.edu/Discovere/september2003/TopStories/Dietrich.htm

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>