Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mind games: Rescuing human survival from the maelstrom of everyday change

15.09.2003



The meaning and nature of change is a question that has fascinated some of the world’s greatest minds since long before the birth of Christ. Today, legions of philosophers and hosts of cognitive scientists continue to work to resolve what may be one of the world’s greatest paradoxes: How is it that change and constancy coexist in the world and in the human mind? Binghamton University Professor Eric Dietrich is sure of at least one thing. Our creativity, and likely our very survival, depends on the fact that they somehow do.

Imagine having no memory in a world rife with change. Everything and everyone is brand new to you at every moment. You don’t recognize family members. You don’t recognize your surroundings. You don’t recognize that you are the same person you were as a child…or even last week. You don’t know whether things are safe to eat or drink, or what the darkening sky and blustering winds might foreshadow. No past. No future. Just a totally confounding present in which the word "change" has lost all relevance and meaning because that’s all there is. If the scenario is unnerving, that’s likely because it would probably mean the end of life as we know it.

"Without a some thread of constancy," agrees Eric Dietrich, a cognitive scientist and philosopher of the mind, "we’d be toast."



According to Dietrich, what actually happens for most of us is that change and constancy engage in a mysterious and symbiotic dance-a reel in which the two alternate the lead, working separately and in collaboration to inform our perceptions and interpretations of the world around us. Fortuitously, this results in a whole significantly greater than the sum of the parts. It also points to the kind of emergent properties that continue to fuel cognitive studies and perplex cognitive scientists, Dietrich said.

"You’ve got a whole bunch of neurons doing their thing in the brain," he said. "What individual neurons do is very sophisticated. But it’s nothing compared to what a whole human can do."

Somehow, new and unpredictable properties emerge from the system-and a brain becomes part but not parcel of a mind.

"You get all these neurons doing their thing and somehow you end up with a language- speaking human engaged in trying to establish world peace," he said. "That’s a little hard to predict from neuronal activity in the brain. We couldn’t even predict consciousness from the neuronal activity in the brain."

Still it is minds, after all, that keep an ever-changing world from utter chaos most philosophers now agree.

"The world is constantly changing, but humans stamp constancy on it with their minds." Dietrich said. "Minds make an ever-changing world somewhat constant. But no one is really sure how we manage to pull it off."

"Look at the computer," he said. "Twenty years ago, it was huge. Now it’s tiny." He eventually hopes to create what he calls a "lab on a chip," by shrinking down all of the equipment in a chemistry lab to the size of computer chips. Smaller equipment not only uses fewer resources, he said, but creates less waste.

How is it that we develop and sustain the kind of constancy that is critical to learning, relationships and very possibly our basic sanity and survival in an ever changing world?

Dietrich thinks the answer might be found in analogy and abstraction, both of which are at the heart of his current research interests. Analogy depends on and is characterized by an ability to draw similarities between things that are dissimilar. Abstraction is the act of developing a general sense or gist notion from many specific pieces of information, he said. He is working in both areas through the development of algorithms to inform the development of artificial intelligence and his studies of cognition and the human mind.

In 1909, when it suddenly occurred to Ernest Rutherford that electrons must hold the negative charge of atoms and that they must also orbit the nucleus "like planets around the sun," Rutherford was abstracting from bits of data before him and drawing an analogy between a familiar or "constant" idea and an observed phenomenon or perception to arrive at a brand new concept, Dietrich said. Though analogy research is a great success story in cognitive science, Dietrich said researchers are still a long way from building a machine that can spontaneously do what Rutherford did.

"We have artificial neural networks that do a good job of perceptual abstraction. They can look at your face and my face and despite the obvious differences, they can abstract the notion of face," he said. " We even have machines-Deep Blue-that can sometimes beat world chess champions. But at the end of the game (Garry) Kasparov can stand up and go home. He can tie his shoes. He can make pasta. He can have a conversation."

When the game’s over for Deep Blue, on the other hand, the game is truly over. Deep Blue will not be sitting down over a glass of wine to discuss the "thinking" that led up to some critical move during the game.

"It can’t do that," Dietrich said. "It’s like a mousetrap."

Dietrich thinks his work helps to demonstrate that abstraction and analogy are key to the problem of constancy with change. He also hopes to learn more about how both relate to the kind of human creativity and artificial intelligence that will fuel the most promising nanoscale changes of the future, he said.

"It’s one thing to know the actual string of bases in the human genome," Dietrich said. "It’s another thing to know what to do with that information."

Susan E. Barker | Binghamton University
Further information:
http://research.binghamton.edu/Discovere/september2003/TopStories/Dietrich.htm

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>