Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal-eating bacteria may improve methane recovery

12.09.2003


Scientists at the U.S Department of Energy’s Brookhaven National Laboratory are exploring the use of bacteria to increase the recovery of methane, a clean natural gas, from coal beds, and to decontaminate water produced during the methane-recovery process.



Methane gas, which burns without releasing sulfur contaminants, is becoming increasingly important as a natural gas fuel in the U.S. But the process of recovering methane, which is often trapped within porous, unrecovered or waste coal, produces large amounts of water contaminated with salts, organic compounds, metals, and naturally occurring radioactive elements. "Our idea is to use specially developed bacteria to remove the contaminants from the wastewater, and also help to release the trapped methane," says Brookhaven chemist Mow Lin.

Lin’s team has developed several strains of bacteria that can use coal as a nutrient and adsorb or degrade contaminants. They started with natural strains already adapted to extreme conditions, such as the presence of metals or high salinity, then gradually altered the nutrient mix and contaminant levels and selected the most hardy bugs (for more, see: http://www.bnl.gov/bnlweb/pubaf/pr/2001/bnlpr121101.htm).


In laboratory tests, various strains of these microbes have been shown to absorb contaminant metals, degrade dissolved organics, and break down coal in a way that would release trapped methane. The use of such microbe mixtures in the field could greatly improve the efficiency and lower the associated clean-up costs of coal-bed methane recovery, Lin says.

To learn more about this work, see the talk given by Lin during the Division of Fuel Chemistry’s "Synthetic Clean Fuels from Natural Gas and Coalbed Methane: 30 Years Progress Since the First Oil Crisis" session on Thursday, September 11, 2003, at 3:30 p.m. at the Jacob Javits Convention Center, Room 1A13. This research was funded by grants for high-school and undergraduate student research at Brookhaven Lab from Brookhaven Science Associates and DOE’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/
http://www.bnl.gov/bnlweb/pubaf/pr/2001/bnlpr121101.htm

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>