Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm offers fast and accurate X-ray crystal structure identification

03.09.2003


Identifying the structures of certain types of molecular compounds can now take minutes, instead of days, and be performed much more accurately, say scientists who developed a new approach for analyzing key experimental X-ray data.



Knowing the structure of a molecule allows scientists to predict its properties and behavior. While X-ray diffraction measurements have become a powerful tool for determining molecular structure, identifying the three-dimensional structure that best fits the diffraction data can be a major challenge.

As will be reported in the September issue of Acta Crystallographica Section A, researchers at the University of Illinois at Urbana-Champaign have developed an algorithm that provides fast and accurate structure determination for organic compounds and other molecular structures that have a center of symmetry.


In X-ray diffraction, a crystallized version of the target compound is bombarded by a beam of X-rays. Recorded by an X-ray detector, the two-dimensional patterns of diffracted wave intensities can be used to reconstruct the three-dimensional object.

"A big problem, however, is identifying the phases of the diffracted X-rays from measurements of intensities alone," said Nikolaos Sahinidis, an Illinois professor of chemical and biomolecular engineering. "You know how strong the waves are, but you don’t know their phases, which are needed in order to compute the three-dimensional structure. This is known as the ’phase problem’ in crystallography."

Crystallographers usually rely upon various trial-and-error methods to search for a solution that solves the phase problem and identifies the crystal structure. But such methods are time-consuming and do not guarantee a correct solution.

"Most methods for solving the phase problem make use of a merit function to score potential structures based on how well they match the experimental data," Sahinidis said. "In the past, local optimization techniques and advanced computer architectures have been used to solve this problem, which may have a very large number of local optima."

Sahinidis and graduate student Anastasia Vaia developed a new approach: reformulating the problem for the case of centrosymmetric crystal structure into an integer programming problem in terms of the missing phases.

"Integer programming problems have been studied extensively in the optimization literature," Sahinidis said. "A great variety of combinatorial optimization methods have been developed to solve these problems without explicitly trying all possible combinations of the missing phases."

By introducing integer programming into crystallographic computing, "we can use off-the-shelf optimization software to rapidly find the correct solution to the phase problem," Sahinidis said. "We were able to solve many X-ray structures for which popular crystallographic software failed to provide a solution. No trial-and-error is required by our algorithm and there is no ambiguity that the correct three-dimensional structure has been identified."

Sahinidis and Vaia are now working to extend the integer programming approach to the more general case of non-centrosymmetric structures, which includes most proteins.



###
The University of Illinois, National Science Foundation and ExxonMobil Upstream Research Company funded the work.

Jim Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>