Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers identify protein crucial to gene silencing

03.09.2003


A cellular protein identified by scientists at the University of North Carolina at Chapel Hill may be the crucial molecular element for gene silencing.



The research findings, published Aug. 29 in the science journal Molecular Cell, add important knowledge to the understanding of epigenetic signals. These chemical signals affect the modulation of gene expression - activation or repression - throughout the genome.

Studies at UNC and elsewhere have shown that epigenetic phenomena underpin the shutting down of one copy of the X chromosome occurring in female mammals, and parental "imprinting" - in which a gene’s activity depends on whether it’s inherited from the mother or father. During development, the expression of whole sets of genes must be repressed, or silenced, after their proteins set the body pattern.


One such epigenetic event is histone methylation, the addition of one or more methyl groups to lysine, one of the amino acids that make up the "tail" domain of histone proteins. Within the cell nucleus, spiraling strands of DNA are wrapped tightly around four core histone proteins and then fold to form a densely packed structure called chromatin. This complex of nucleic acids and proteins packages DNA into higher order structures, ultimately forming a chromosome.

The chemical modification of histone tails can alter chromatin structure, loosening or tightening it, which in turn influences the expression of adjacent genes. In the journal article, a study team led by Dr. Yi Zhang, assistant professor of biochemistry and biophysics in UNC’s School of Medicine and a member of UNC’s Lineberger Comprehensive Cancer Center, reported having identified for the first time a protein that directly regulates lysine methylation on the core histone protein, H3, in a way that represses gene activity.

"We have found the first molecule, the first gene product, that can regulate methylation," Zhang said.

In earlier research, Zhang identified a catalytic subunit associated with lysine methylation. This is the murine (mouse) enzyme ESET and its human homologue SETDB1. However, subsequent studies showed that such methylation might not be enough by itself to trigger gene silencing.

The newly discovered murine regulatory protein is called "mAM." Its human equivalent, or homologue, is "hAM." Stimulated by this protein, the state of methylation of lysine-9 on H3 that’s produced by the enzymatic subunit is made more complex - moving from dimethylation, the addition of two methyl groups, to trimethylation, the addition of three. In this new state, lysine-9 methylation becomes the signal for gene repression.

While the catalytic subunit alone can methylate a particular lysine residue on H3, in this case lysine-9, gene silencing occurs only when the lysine is methylated to the trimethyl state, Zhang said.

"The catalytic subunit by itself can have enzymatic activity, but not enough potency to repress gene expression," Zhang said. "Now we have demonstrated both in vitro and in vivo that gene repression is dependent on trimethylation." Zhang and his team are studying the biological significance of their discovery. "We have some indications that it’s important for apoptosis, programmed cell death. We’re also studying chromatin epigenetics with a view toward determining if they play a role in the ability of stem cells to commit to a specific lineage."

Along with Zhang, UNC co-authors of the report include Drs. Hengbin Wang and Li Xia and doctoral student Ru Cao. Other co-authors are Woojin An and Robert G. Roeder of Rockefeller University; Hediye Erdjument-Bromage and Paul Tempst of Memorial Sloan-Kettering Cancer Center in New York; and Bruno Chatton of CNRS-INSERM, in Strasbourg, France.


The research was supported by a grant from the National Institute of General Medicine, a component of the National Institutes of Health.

Note: Contact Zhang at (919) 843-8225 or yi_zhang@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

By LESLIE H. LANG
UNC School of Medicine

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>