Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers identify protein crucial to gene silencing

03.09.2003


A cellular protein identified by scientists at the University of North Carolina at Chapel Hill may be the crucial molecular element for gene silencing.



The research findings, published Aug. 29 in the science journal Molecular Cell, add important knowledge to the understanding of epigenetic signals. These chemical signals affect the modulation of gene expression - activation or repression - throughout the genome.

Studies at UNC and elsewhere have shown that epigenetic phenomena underpin the shutting down of one copy of the X chromosome occurring in female mammals, and parental "imprinting" - in which a gene’s activity depends on whether it’s inherited from the mother or father. During development, the expression of whole sets of genes must be repressed, or silenced, after their proteins set the body pattern.


One such epigenetic event is histone methylation, the addition of one or more methyl groups to lysine, one of the amino acids that make up the "tail" domain of histone proteins. Within the cell nucleus, spiraling strands of DNA are wrapped tightly around four core histone proteins and then fold to form a densely packed structure called chromatin. This complex of nucleic acids and proteins packages DNA into higher order structures, ultimately forming a chromosome.

The chemical modification of histone tails can alter chromatin structure, loosening or tightening it, which in turn influences the expression of adjacent genes. In the journal article, a study team led by Dr. Yi Zhang, assistant professor of biochemistry and biophysics in UNC’s School of Medicine and a member of UNC’s Lineberger Comprehensive Cancer Center, reported having identified for the first time a protein that directly regulates lysine methylation on the core histone protein, H3, in a way that represses gene activity.

"We have found the first molecule, the first gene product, that can regulate methylation," Zhang said.

In earlier research, Zhang identified a catalytic subunit associated with lysine methylation. This is the murine (mouse) enzyme ESET and its human homologue SETDB1. However, subsequent studies showed that such methylation might not be enough by itself to trigger gene silencing.

The newly discovered murine regulatory protein is called "mAM." Its human equivalent, or homologue, is "hAM." Stimulated by this protein, the state of methylation of lysine-9 on H3 that’s produced by the enzymatic subunit is made more complex - moving from dimethylation, the addition of two methyl groups, to trimethylation, the addition of three. In this new state, lysine-9 methylation becomes the signal for gene repression.

While the catalytic subunit alone can methylate a particular lysine residue on H3, in this case lysine-9, gene silencing occurs only when the lysine is methylated to the trimethyl state, Zhang said.

"The catalytic subunit by itself can have enzymatic activity, but not enough potency to repress gene expression," Zhang said. "Now we have demonstrated both in vitro and in vivo that gene repression is dependent on trimethylation." Zhang and his team are studying the biological significance of their discovery. "We have some indications that it’s important for apoptosis, programmed cell death. We’re also studying chromatin epigenetics with a view toward determining if they play a role in the ability of stem cells to commit to a specific lineage."

Along with Zhang, UNC co-authors of the report include Drs. Hengbin Wang and Li Xia and doctoral student Ru Cao. Other co-authors are Woojin An and Robert G. Roeder of Rockefeller University; Hediye Erdjument-Bromage and Paul Tempst of Memorial Sloan-Kettering Cancer Center in New York; and Bruno Chatton of CNRS-INSERM, in Strasbourg, France.


The research was supported by a grant from the National Institute of General Medicine, a component of the National Institutes of Health.

Note: Contact Zhang at (919) 843-8225 or yi_zhang@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

By LESLIE H. LANG
UNC School of Medicine

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>