Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts University bioengineers discover secret of spider, silkworm fiber strength

28.08.2003


Findings could drive new tissue engineering applications, organ repair and high-strength materials



Tufts University bioengineers have discovered how spiders and silkworms are able to spin webs and cocoons made of incredibly strong fibers. The answer lies in how they control the silk protein solubility and structural organization in their glands.

"This finding could lead to the development of processing methods resulting in new high-strength and high-performance materials used for biomedical applications, and protective apparel for military and police forces," said David Kaplan, professor and chair of biomedical engineering, and director of Tufts’ Bioengineering Center.


"We identified key aspects of the process that should provide a roadmap for others to optimize artificial spinning of silks as well as in improved production of silks in genetically engineered host systems such as bacteria and transgenic animals," said Kaplan, also a professor of chemical and biological engineering.

He and former postdoctoral fellow Hyoung-Joon Jin published their findings, "Mechanism of Processing of Silks in Insects and Spiders," in the Aug. 28 issue of the international science journal Nature.

The research was funded with $1 million from the National Institutes of Health Dental Institute and $200,000 from the U.S. Air Force Office of Scientific Research. Kaplan collaborated with Tufts colleagues across the University – from chemical, biological and biomedical to the veterinary and dental schools.

Silk is the strongest natural fiber known, but its strength has yet to be replicated in a laboratory. One reason may be the previous lack of understanding how spiders and silkworm process the silk.

The Tufts team has identified the way that spiders and silkworms control the solubility, concentration and structure of the proteins in their glands that spin the silk.

According to Kaplan, silk proteins are organized into pseudo-micelle or soap-like structures that form globular and gel states during processing in the glands. This semi-stable state, with sufficiently entrapped water and liquid crystalline structures, prevents the proteins from crystallizing too early, until the spinning process.

The structures formed in the process can be easily converted artificially into fibers with physical shear (moving the silk gel between two plates of glass) or during fiber spinning in the native process. The control of water content and structure development are essential because premature crystallization of the protein could cause a permanent blockage of the spinning system, leading to catastrophic consequences for the spider or silkworm.

This process, when combined with the novel polymer design features in silk proteins, retains sufficient water to keep the protein soluble, while allowing the protein to self-organize and reach spinnable concentrations. Achieving sufficient concentration of protein is key to the proper spinning of fibers and to the spider’s and silkworm’s survival.

Kaplan says this new insight into silk processing could result in:


New high-strength and high-performance materials such as sports equipment, hiking gear and protective clothing for law enforcement;

New biomaterial applications for cell growth in tissue engineering, as well as general biomaterial needs for tissue and organ repair;

Environmentally sound processes to generate fibers and films from these types of polymers, since the entire process occurs in water.
"Kaplan’s research is distinctive because it addresses a fundamental problem common to all prior research in this field," said Jamshed Bharucha, Tufts provost and senior vice president.

In 2002, Kaplan and his team of researchers from Tufts’ schools of engineering and medicine developed a tissue engineering strategy to repair one of the world’s most common knee injuries -- ruptured anterior cruciate ligaments (ACL) -- by mechanically and biologically engineering new ones using silk scaffolding for cell growth. This ligament at the center of the knee connects the leg to the thigh and stabilizes the knee joint in leg extension and flexion.

Approximately 200,000 ACL surgeries were done in the U.S. in 2001, costing an estimated $3.5 billion, plus another $200 million for subsequent therapy. The costs associated with surgery can range from $10,000 to $25,000 per procedure, and up to $1,200 in physical therapy.


Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the University’s eight schools is widely encouraged.


Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>