Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts University bioengineers discover secret of spider, silkworm fiber strength

28.08.2003


Findings could drive new tissue engineering applications, organ repair and high-strength materials



Tufts University bioengineers have discovered how spiders and silkworms are able to spin webs and cocoons made of incredibly strong fibers. The answer lies in how they control the silk protein solubility and structural organization in their glands.

"This finding could lead to the development of processing methods resulting in new high-strength and high-performance materials used for biomedical applications, and protective apparel for military and police forces," said David Kaplan, professor and chair of biomedical engineering, and director of Tufts’ Bioengineering Center.


"We identified key aspects of the process that should provide a roadmap for others to optimize artificial spinning of silks as well as in improved production of silks in genetically engineered host systems such as bacteria and transgenic animals," said Kaplan, also a professor of chemical and biological engineering.

He and former postdoctoral fellow Hyoung-Joon Jin published their findings, "Mechanism of Processing of Silks in Insects and Spiders," in the Aug. 28 issue of the international science journal Nature.

The research was funded with $1 million from the National Institutes of Health Dental Institute and $200,000 from the U.S. Air Force Office of Scientific Research. Kaplan collaborated with Tufts colleagues across the University – from chemical, biological and biomedical to the veterinary and dental schools.

Silk is the strongest natural fiber known, but its strength has yet to be replicated in a laboratory. One reason may be the previous lack of understanding how spiders and silkworm process the silk.

The Tufts team has identified the way that spiders and silkworms control the solubility, concentration and structure of the proteins in their glands that spin the silk.

According to Kaplan, silk proteins are organized into pseudo-micelle or soap-like structures that form globular and gel states during processing in the glands. This semi-stable state, with sufficiently entrapped water and liquid crystalline structures, prevents the proteins from crystallizing too early, until the spinning process.

The structures formed in the process can be easily converted artificially into fibers with physical shear (moving the silk gel between two plates of glass) or during fiber spinning in the native process. The control of water content and structure development are essential because premature crystallization of the protein could cause a permanent blockage of the spinning system, leading to catastrophic consequences for the spider or silkworm.

This process, when combined with the novel polymer design features in silk proteins, retains sufficient water to keep the protein soluble, while allowing the protein to self-organize and reach spinnable concentrations. Achieving sufficient concentration of protein is key to the proper spinning of fibers and to the spider’s and silkworm’s survival.

Kaplan says this new insight into silk processing could result in:


New high-strength and high-performance materials such as sports equipment, hiking gear and protective clothing for law enforcement;

New biomaterial applications for cell growth in tissue engineering, as well as general biomaterial needs for tissue and organ repair;

Environmentally sound processes to generate fibers and films from these types of polymers, since the entire process occurs in water.
"Kaplan’s research is distinctive because it addresses a fundamental problem common to all prior research in this field," said Jamshed Bharucha, Tufts provost and senior vice president.

In 2002, Kaplan and his team of researchers from Tufts’ schools of engineering and medicine developed a tissue engineering strategy to repair one of the world’s most common knee injuries -- ruptured anterior cruciate ligaments (ACL) -- by mechanically and biologically engineering new ones using silk scaffolding for cell growth. This ligament at the center of the knee connects the leg to the thigh and stabilizes the knee joint in leg extension and flexion.

Approximately 200,000 ACL surgeries were done in the U.S. in 2001, costing an estimated $3.5 billion, plus another $200 million for subsequent therapy. The costs associated with surgery can range from $10,000 to $25,000 per procedure, and up to $1,200 in physical therapy.


Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the University’s eight schools is widely encouraged.


Craig LeMoult | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>