Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting hairs: GATA-3 function in hair follicle development

22.08.2003


A group of scientists led by Dr. Elaine Fuchs at the Howard Hughes Medical Institute at the Rockefeller University have uncovered an unexpected new role for the well-known transcription factor, GATA-3, in hair follicle development. GATA-3 was previously identified for its role in coaxing hematopoietic stem cells towards a T-cell fate. Now, Dr. Fuchs and colleagues reveal that GATA-3 is also involved in epidermal stem cell specification. This finding lends valuable insight into hair follicle generation, and highlights intriguing parallels between the molecular cues that direct cell fate specification in the skin and the immune system.





Each of the roughly 5 million hair follicles that cover the adult human body has a similar structure. The hair follicle consists of a multi-layered hair shaft, the outermost layer of which is referred to as the cuticle. Below the skin surface, the cuticle is surrounded by an inner root sheath (IRS).

"The IRS acts as a channel, functioning to guide the developing hair shaft up to the skin surface. Without the channel, the hair does not develop properly," explains professor Fuchs.


In an effort to understand how cells are directed towards an IRS fate, Dr. Fuchs and two MD/PhD students, Charles Kaufman and Diana Bolotin, used microarray analysis to monitor gene expression levels in the dorsal (back) skin of embryonic mice. GATA-3 emerged as one gene that was turned on during hair morphogenesis. Further work by Dr. Fuchs and colleagues revealed that the GATA-3 protein is specifically expressed in IRS cells of the hair follicle.

These findings, coupled with existing knowledge of GATA-3’s function as a master gene regulator of cell lineage specification in the immune system, posited GATA-3 as an attractive candidate for directing epidermal stem cells to become IRS cells.

To investigate the precise role of GATA-3 in hair follicle morphogenesis, Dr. Fuchs and colleagues turned to a strain of GATA-3-deficient mice to observe what defects, if any, appeared in these mice. However, since GATA-3-deficient mice die in utero well before hair follicles develop, Dr. Fuchs and colleagues used a drug rescue regime to help these embryos to survive until embryonic day 18.5, when at least the whiskers have matured. As suspected, these pharmacologically rescued GATA-3-null mice did, in fact, show a number of abnormalities in hair development.

Dr. Fuchs and colleagues discovered that GATA-3-deficient follicles fail to develop cells of the IRS, and as a result, generate hair with severe structural anomalies.

The whisker follicles of pharmacologically rescued GATA-3-null mice were oddly bent, and displayed irregular thickenings and delayed emergence through the skin. However, for as unusual as their whiskers appeared, the remainder of the epidermis of these pharmacologically rescued GATA-3-null mice appeared to function properly.

When Dr. Fuchs and colleagues grafted dorsal skin from pharmacologically rescued GATA-3-null mice onto GATA-3-normal mice, and thereby allowed the hair follicles more time to develop, they noticed further distortions. The GATA-3-null skin grafts failed to grow normal fur. Even after almost a month, the GATA-3-null grafts generated nothing more than short stubble. Furthermore, the hairs that did finally emerge were short, thick, and had an irregular cuticle pattern (see photo from electron microscopist, Dr. Amalia Pasolli).

"These studies bring us one step closer to understanding the key components that go into making a hair follicle. Over the past few years, we and others in the field have identified critical signals for making the hair itself. Now, we’ve uncovered an important missing factor in creating the channel, which must develop coordinately with the hair. In addition, the finding sheds new light on the striking parallels between how stem cells in the bone marrow and those in the skin undergo differentiation in the body."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>