Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting hairs: GATA-3 function in hair follicle development

22.08.2003


A group of scientists led by Dr. Elaine Fuchs at the Howard Hughes Medical Institute at the Rockefeller University have uncovered an unexpected new role for the well-known transcription factor, GATA-3, in hair follicle development. GATA-3 was previously identified for its role in coaxing hematopoietic stem cells towards a T-cell fate. Now, Dr. Fuchs and colleagues reveal that GATA-3 is also involved in epidermal stem cell specification. This finding lends valuable insight into hair follicle generation, and highlights intriguing parallels between the molecular cues that direct cell fate specification in the skin and the immune system.





Each of the roughly 5 million hair follicles that cover the adult human body has a similar structure. The hair follicle consists of a multi-layered hair shaft, the outermost layer of which is referred to as the cuticle. Below the skin surface, the cuticle is surrounded by an inner root sheath (IRS).

"The IRS acts as a channel, functioning to guide the developing hair shaft up to the skin surface. Without the channel, the hair does not develop properly," explains professor Fuchs.


In an effort to understand how cells are directed towards an IRS fate, Dr. Fuchs and two MD/PhD students, Charles Kaufman and Diana Bolotin, used microarray analysis to monitor gene expression levels in the dorsal (back) skin of embryonic mice. GATA-3 emerged as one gene that was turned on during hair morphogenesis. Further work by Dr. Fuchs and colleagues revealed that the GATA-3 protein is specifically expressed in IRS cells of the hair follicle.

These findings, coupled with existing knowledge of GATA-3’s function as a master gene regulator of cell lineage specification in the immune system, posited GATA-3 as an attractive candidate for directing epidermal stem cells to become IRS cells.

To investigate the precise role of GATA-3 in hair follicle morphogenesis, Dr. Fuchs and colleagues turned to a strain of GATA-3-deficient mice to observe what defects, if any, appeared in these mice. However, since GATA-3-deficient mice die in utero well before hair follicles develop, Dr. Fuchs and colleagues used a drug rescue regime to help these embryos to survive until embryonic day 18.5, when at least the whiskers have matured. As suspected, these pharmacologically rescued GATA-3-null mice did, in fact, show a number of abnormalities in hair development.

Dr. Fuchs and colleagues discovered that GATA-3-deficient follicles fail to develop cells of the IRS, and as a result, generate hair with severe structural anomalies.

The whisker follicles of pharmacologically rescued GATA-3-null mice were oddly bent, and displayed irregular thickenings and delayed emergence through the skin. However, for as unusual as their whiskers appeared, the remainder of the epidermis of these pharmacologically rescued GATA-3-null mice appeared to function properly.

When Dr. Fuchs and colleagues grafted dorsal skin from pharmacologically rescued GATA-3-null mice onto GATA-3-normal mice, and thereby allowed the hair follicles more time to develop, they noticed further distortions. The GATA-3-null skin grafts failed to grow normal fur. Even after almost a month, the GATA-3-null grafts generated nothing more than short stubble. Furthermore, the hairs that did finally emerge were short, thick, and had an irregular cuticle pattern (see photo from electron microscopist, Dr. Amalia Pasolli).

"These studies bring us one step closer to understanding the key components that go into making a hair follicle. Over the past few years, we and others in the field have identified critical signals for making the hair itself. Now, we’ve uncovered an important missing factor in creating the channel, which must develop coordinately with the hair. In addition, the finding sheds new light on the striking parallels between how stem cells in the bone marrow and those in the skin undergo differentiation in the body."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>