Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting hairs: GATA-3 function in hair follicle development

22.08.2003


A group of scientists led by Dr. Elaine Fuchs at the Howard Hughes Medical Institute at the Rockefeller University have uncovered an unexpected new role for the well-known transcription factor, GATA-3, in hair follicle development. GATA-3 was previously identified for its role in coaxing hematopoietic stem cells towards a T-cell fate. Now, Dr. Fuchs and colleagues reveal that GATA-3 is also involved in epidermal stem cell specification. This finding lends valuable insight into hair follicle generation, and highlights intriguing parallels between the molecular cues that direct cell fate specification in the skin and the immune system.





Each of the roughly 5 million hair follicles that cover the adult human body has a similar structure. The hair follicle consists of a multi-layered hair shaft, the outermost layer of which is referred to as the cuticle. Below the skin surface, the cuticle is surrounded by an inner root sheath (IRS).

"The IRS acts as a channel, functioning to guide the developing hair shaft up to the skin surface. Without the channel, the hair does not develop properly," explains professor Fuchs.


In an effort to understand how cells are directed towards an IRS fate, Dr. Fuchs and two MD/PhD students, Charles Kaufman and Diana Bolotin, used microarray analysis to monitor gene expression levels in the dorsal (back) skin of embryonic mice. GATA-3 emerged as one gene that was turned on during hair morphogenesis. Further work by Dr. Fuchs and colleagues revealed that the GATA-3 protein is specifically expressed in IRS cells of the hair follicle.

These findings, coupled with existing knowledge of GATA-3’s function as a master gene regulator of cell lineage specification in the immune system, posited GATA-3 as an attractive candidate for directing epidermal stem cells to become IRS cells.

To investigate the precise role of GATA-3 in hair follicle morphogenesis, Dr. Fuchs and colleagues turned to a strain of GATA-3-deficient mice to observe what defects, if any, appeared in these mice. However, since GATA-3-deficient mice die in utero well before hair follicles develop, Dr. Fuchs and colleagues used a drug rescue regime to help these embryos to survive until embryonic day 18.5, when at least the whiskers have matured. As suspected, these pharmacologically rescued GATA-3-null mice did, in fact, show a number of abnormalities in hair development.

Dr. Fuchs and colleagues discovered that GATA-3-deficient follicles fail to develop cells of the IRS, and as a result, generate hair with severe structural anomalies.

The whisker follicles of pharmacologically rescued GATA-3-null mice were oddly bent, and displayed irregular thickenings and delayed emergence through the skin. However, for as unusual as their whiskers appeared, the remainder of the epidermis of these pharmacologically rescued GATA-3-null mice appeared to function properly.

When Dr. Fuchs and colleagues grafted dorsal skin from pharmacologically rescued GATA-3-null mice onto GATA-3-normal mice, and thereby allowed the hair follicles more time to develop, they noticed further distortions. The GATA-3-null skin grafts failed to grow normal fur. Even after almost a month, the GATA-3-null grafts generated nothing more than short stubble. Furthermore, the hairs that did finally emerge were short, thick, and had an irregular cuticle pattern (see photo from electron microscopist, Dr. Amalia Pasolli).

"These studies bring us one step closer to understanding the key components that go into making a hair follicle. Over the past few years, we and others in the field have identified critical signals for making the hair itself. Now, we’ve uncovered an important missing factor in creating the channel, which must develop coordinately with the hair. In addition, the finding sheds new light on the striking parallels between how stem cells in the bone marrow and those in the skin undergo differentiation in the body."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>