Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes’ Genomes Promise Insight into Oceans

14.08.2003

The world’s smallest photosynthetic organisms, microbes that can turn sunlight and carbon dioxide into living biomass, will be in the limelight next week. Three international teams of scientists, two funded in part by the National Science Foundation (NSF), will announce the genetic blueprints for four closely related forms of these organisms, which dominate the phytoplankton, the tiny floating plants of the oceans.

The work will be reported in the August 13 online issues of Nature and the Proceedings of the National Academy of Sciences.

Much like the sequencing of the human genome, the sequencing of the genomes of three strains of Prochlorococcus and one of closely related Synechococcus should crack many mysteries about these organisms-and about phytoplankton in general.

A better understanding of phytoplankton, which play a critical role in the regulation of atmospheric carbon dioxide, will aid studies on global climate change. The metabolic machinery of these single-celled organisms could serve as a model for sustainable energy production, as they can turn sunlight into chemical energy, according to Gabrielle Rocap of the University of Washington, lead author of the Nature paper that reports the genomes of two strains of Prochlorococcus. "The four genomes that have been sequenced represent numerous strains that populate ocean waters and form the base of the food web," says Rocap. "A hundred of these organisms can fit end-to- end across the width of a human hair, but they grow in such abundance that, small as they are, at times they amount to more than 50 percent of the photosynthetic biomass of the oceans."

It behooves us "to understand exactly how, with roughly 2,000 genes, this tiny cell converts solar energy into living biomass-basic elements into life," said Sallie (Penny) Chisholm, a biological oceanographer at the Massachusetts Institute of Technology (MIT). "These cells are not just esoteric little creatures; they dominate the oceans. There are some 100 million Prochlorococcus cells per liter of seawater, and they are responsible for a significant fraction of global photosynthesis."

This research addresses in a concrete way major questions in biological oceanography at levels finer than the species level, says Phillip Taylor, director of NSF’s biological oceanography program, which co- funded the research. "The work shows there is a rich and fascinating diversity of physiological capacity and adaptation in the sea, and that this diversity is not always revealed just by looking in the microscope."

Adds Raymond Orbach, director of the office of science at the Department of Energy (DOE), which funded the research, "While many questions remain, it’s clear that Prochlorococcus and Synechococcus play a significant role in photosynthetic ocean carbon sequestration. Having the completed genome in hand gives us a first-albeit crude-’parts list’ to use in exploring the mechanisms for these and other critically important processes that could be directly relevant to this critical DOE mission."

In the same issue of Nature, a team led by Brian Palenik of the Scripps Institution of Oceanography, part of the University of California at San Diego, will report the sequence of Synechococcus, a co- inhabitant of ocean waters with Prochlorococcus, that has a unique form of motility.

The Prochlorococcus and Synechococcus teams collaborated closely. "We learned a tremendous amount working together," said Palenik. "By coming at it from different perspectives, we were able to see common themes in how these organisms adapted to the open ocean."

A separate report, by a team led by Frederick Partensky, at the Centre National de la Recherche Scientifique, Station Biologique de Roscoff, describes the genome of a third strain of Prochlorococcus and will be published online August 13 in the Proceedings of the National Academy of Sciences.

The work of all three teams "will allow us to better understand what differentiates the ecology of these closely related organisms through comparative genomics," said Chisholm.

Rocap and her colleagues present a kind of case study for how this might work. They report the genetic sequences for two different Prochlorococcus strains, then go on to compare them. The resulting analysis "reveals many of the genetic foundations for the observed differences in [the two strains’] physiologies and vertical niche partitioning," the authors report. The latter refers to each strain’s slightly different ecological niche-they thrive at different depths in the ocean’s surface waters.

Chisholm emphasizes that, "we still don’t know the functions of nearly half of these organisms’ genes. We’re excited about unveiling those functions-particularly for those genes that are unique to the different strains-because they’ll alert us to key factors important in regulating marine productivity [photosynthesis] and plankton diversity."

The idea, she says, "is to let the organisms tell us what dimensions of their environment are important in determining their distribution and abundance. This will become easier and easier as the genomes of additional strains are sequenced, and the functions of the genes are understood."

Concludes Rocap, "Right now, we don’t even know the range of diversity that exists. We’ve had just a glimpse of the different genome types that are out there."

This research was also sponsored by the Seaver Foundation, the Israel-US Binational Science Foundation, and FP5-Margenes.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>