Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes’ Genomes Promise Insight into Oceans

14.08.2003

The world’s smallest photosynthetic organisms, microbes that can turn sunlight and carbon dioxide into living biomass, will be in the limelight next week. Three international teams of scientists, two funded in part by the National Science Foundation (NSF), will announce the genetic blueprints for four closely related forms of these organisms, which dominate the phytoplankton, the tiny floating plants of the oceans.

The work will be reported in the August 13 online issues of Nature and the Proceedings of the National Academy of Sciences.

Much like the sequencing of the human genome, the sequencing of the genomes of three strains of Prochlorococcus and one of closely related Synechococcus should crack many mysteries about these organisms-and about phytoplankton in general.

A better understanding of phytoplankton, which play a critical role in the regulation of atmospheric carbon dioxide, will aid studies on global climate change. The metabolic machinery of these single-celled organisms could serve as a model for sustainable energy production, as they can turn sunlight into chemical energy, according to Gabrielle Rocap of the University of Washington, lead author of the Nature paper that reports the genomes of two strains of Prochlorococcus. "The four genomes that have been sequenced represent numerous strains that populate ocean waters and form the base of the food web," says Rocap. "A hundred of these organisms can fit end-to- end across the width of a human hair, but they grow in such abundance that, small as they are, at times they amount to more than 50 percent of the photosynthetic biomass of the oceans."

It behooves us "to understand exactly how, with roughly 2,000 genes, this tiny cell converts solar energy into living biomass-basic elements into life," said Sallie (Penny) Chisholm, a biological oceanographer at the Massachusetts Institute of Technology (MIT). "These cells are not just esoteric little creatures; they dominate the oceans. There are some 100 million Prochlorococcus cells per liter of seawater, and they are responsible for a significant fraction of global photosynthesis."

This research addresses in a concrete way major questions in biological oceanography at levels finer than the species level, says Phillip Taylor, director of NSF’s biological oceanography program, which co- funded the research. "The work shows there is a rich and fascinating diversity of physiological capacity and adaptation in the sea, and that this diversity is not always revealed just by looking in the microscope."

Adds Raymond Orbach, director of the office of science at the Department of Energy (DOE), which funded the research, "While many questions remain, it’s clear that Prochlorococcus and Synechococcus play a significant role in photosynthetic ocean carbon sequestration. Having the completed genome in hand gives us a first-albeit crude-’parts list’ to use in exploring the mechanisms for these and other critically important processes that could be directly relevant to this critical DOE mission."

In the same issue of Nature, a team led by Brian Palenik of the Scripps Institution of Oceanography, part of the University of California at San Diego, will report the sequence of Synechococcus, a co- inhabitant of ocean waters with Prochlorococcus, that has a unique form of motility.

The Prochlorococcus and Synechococcus teams collaborated closely. "We learned a tremendous amount working together," said Palenik. "By coming at it from different perspectives, we were able to see common themes in how these organisms adapted to the open ocean."

A separate report, by a team led by Frederick Partensky, at the Centre National de la Recherche Scientifique, Station Biologique de Roscoff, describes the genome of a third strain of Prochlorococcus and will be published online August 13 in the Proceedings of the National Academy of Sciences.

The work of all three teams "will allow us to better understand what differentiates the ecology of these closely related organisms through comparative genomics," said Chisholm.

Rocap and her colleagues present a kind of case study for how this might work. They report the genetic sequences for two different Prochlorococcus strains, then go on to compare them. The resulting analysis "reveals many of the genetic foundations for the observed differences in [the two strains’] physiologies and vertical niche partitioning," the authors report. The latter refers to each strain’s slightly different ecological niche-they thrive at different depths in the ocean’s surface waters.

Chisholm emphasizes that, "we still don’t know the functions of nearly half of these organisms’ genes. We’re excited about unveiling those functions-particularly for those genes that are unique to the different strains-because they’ll alert us to key factors important in regulating marine productivity [photosynthesis] and plankton diversity."

The idea, she says, "is to let the organisms tell us what dimensions of their environment are important in determining their distribution and abundance. This will become easier and easier as the genomes of additional strains are sequenced, and the functions of the genes are understood."

Concludes Rocap, "Right now, we don’t even know the range of diversity that exists. We’ve had just a glimpse of the different genome types that are out there."

This research was also sponsored by the Seaver Foundation, the Israel-US Binational Science Foundation, and FP5-Margenes.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>