Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute scienists find that stem cells in the bone marrow become liver cells

12.08.2003


They still don’t have a personality, and they’re waiting for the maturity call. Stem cells in our bone marrow usually develop into blood cells, replenishing our blood system. However, in states of emergency, the destiny of some of these stem cells may change: They can become virtually any type of cell – liver cells, muscle cells, nerve cells – responding to the body’s needs.



Prof. Tsvee Lapidot and Dr. Orit Kollet of the Weizmann Institute’s Immunology Department have found how the liver, when damaged, sends a cry for help to these stem cells. "When the liver becomes damaged, it signals to stem cells in the bone marrow, which rush to it and help in its repair – as liver cells," says Lapidot. His research team has found that certain molecules that govern normal development of the liver become overproduced when it is damaged, signaling to the stem cells in the bone marrow to come to the site. The scientists were able to pinpoint the signaling molecules – HGF, MMP-9 and SDF-1– and describe the homing process. HGF is involved in liver cell development and, in irregular cases, can play a role in cancer metastasis. MMP-9 assists cell migration from the blood system into various types of tissue, including liver tissue. SDF-1 is a molecule that stem cells are attracted to. The scientists discovered that large amounts of HGF and MMP-9, when overproduced in the damaged liver, enter the blood flow and increase the sensitivity of stem cells in the bone marrow to SDF-1. Suddenly able to sense SDF-1’s calling signal from the liver (which itself is amplified due to increased production and distribution of SDF-1), the stem cells migrate from the bone marrow into the blood and navigate their way to the liver. The findings could lead to new insights into organ repair and transplants, especially liver-related ones. They may also uncover a whole new stock of stem cells that can under certain conditions become liver cells. Until a few years ago only embryonic stem cells were thought to possess such capabilities. Understanding how stem cells in the bone marrow turn into liver cells could one day be a great boon to liver repair as well as an alternative to the use of embryonic stem cells.



Prof. Tsvee Lapidot’s research is supported by the Concern Foundation, Beverly Hills, CA; Ms. Rhoda Goldstein, Nanuet, NY; Levine Institute of Applied Science; M.D. Moross Institute for Cancer Research; Ms. Nora Peisner, Hungtington, MI; and Gabrielle Rich Center for Transplantation Biology Research.


Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity
28.06.2017 | Technische Universität München

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>