Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify New Cause of Genomic Instability

08.08.2003


HHMI Investigator Frederick Alt


Researchers sifting through the indispensable machinery that senses and fixes broken DNA have discovered a new culprit that can induce instability in the genome and thereby set the stage for cancer to develop.

Studies in mice have shown that loss of H2AX, a gene that produces a protein called a histone that is part of the chromosomal structure, can tip the delicate balance of proteins that are curators of the human genome. When H2AX ceases to function properly, lymphomas and solid tumors can arise because errors in the genetic code are not always repaired correctly, according to the new research.

The finding may have important implications for understanding the origin of human cancers because a large number of human tumors are known to contain alterations in the region of chromosome 11 where the H2AX gene is located.



The research was reported in an article published in the August 8, 2003, issue of the journal Cell by Howard Hughes Medical Institute investigator Frederick Alt and colleagues at Children’s Hospital in Boston and Harvard Medical School. Other co-authors are from the Tufts University School of Veterinary Medicine and Brigham and Women’s Hospital.

According to Alt, previous studies by other researchers had shown that H2AX was activated when DNA breaks occur. DNA repair proteins fix genetic damage, but they are also called to action during the normal gene rearrangement that occurs in immune cells when they are readying to battle viruses and other threats.

To explore the implications of knocking out the H2AX gene, lead author Craig Bassing created a line of mice lacking both copies of the H2AX gene. “Both Craig in our lab and Andre Nussenzweig at the National Cancer Institute produced knockout strains that showed an increased level of genomic instability,” said Alt. Nussenzweig and his colleagues have published an article in the same issue of Cell on studies of their H2AX-knockout mice, and have found similar increases in genomic instability and cancer.

According to Alt, the mice lacking only H2AX genes had only a modest increase in cancer, “which is often the case for many genes that produce cancer, because they operate within a system of cellular checks and balances,” he said. “But when you eliminate two genes that may work in concert to maintain good genomic order, you see things happen that are much more dramatic.”

Thus, the researchers created a double-knockout mouse that lacked both H2AX and p53 — a gene that produces a molecular sentinel protein that suppresses proliferation of cells with damaged DNA. In previous studies, Alt and his colleagues had shown that loss of p53 in cells that lacked the DNA-repair process known as non-homologous end-joining (NHEJ) resulted in a dramatic increase in cancers.

“When we deleted both copies of H2AX and both copies of p53, we found a dramatically increased rate of tumors appearing beyond what would be seen with H2AX deficiency alone, and far, far beyond p53 deficiency alone,” said Alt. These cancers developed so rapidly that within a few months all the mice had died, he said. The resulting tumors included both lymphomas arising from aberrant immune cells — which would be common in the loss of NHEJ DNA repair function — and solid tumors, which are not normally seen when NHEJ is compromised.

The researchers also saw cancers arising from malfunction of DNA repair in mature immune cells called B cells. “These kinds of tumors are much more relevant to what goes on in a very large percentage of lymphomas in humans, and adults, in particular,” said Alt.

Alt said that the biggest surprise came when the researchers produced mice missing only one of the two copies of the H2AX gene. “Both surprising and potentially very significant for human cancers was that p53-deficient mice with deletion of one of their two copies of the H2AX gene came down with cancer much earlier,” he said. “They showed a very broad spectrum of tumors that was somewhat different than p53-deficient animals missing both H2AX genes.”

Furthermore, the studies showed that otherwise normal cells that were missing just one H2AX gene had only half the levels of H2AX and also showed genomic instability.

The possibility that only half the levels of the H2AX protein — called “haploinsufficiency” — triggers genomic instability and cancers could be highly significant, said Alt. Such a class of mutation would not have been readily detected in most searches for genes that suppress tumors in humans. Indeed, Bassing discovered that tumors in these mice still had a functioning H2AX gene.

“A major question is why haploinsufficiency of the H2AX protein can cause genomic instability and cancer,” said Alt. “One might explain that quite easily because the protein is not an enzyme, it’s a structural protein. So, if there’s half as much present, it could cause problems in monitoring breaks in the DNA and in recruiting components of the repair machinery.”

What may be especially relevant to human cancers, said Alt, is that the H2AX gene is located in a region of chromosome 11 known to be altered in many human tumors. While there are other potential cancer-causing genes in that region, he said, the current evidence from the mouse model indicates that H2AX will very likely prove a major player in cancer-causing genomic instability.

Alt and his colleagues are now collaborating with scientists at the Dana-Farber Cancer Institute to analyze the status of H2AX genes in a wide range of human cancers. “We believe that the loss of H2AX could prove a major source of the rampant instability associated with the progression of a variety of different tumors,” he said.

Contact: Jim Keeley, mailto:keeleyj@hhmi.org

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>