Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify New Cause of Genomic Instability


HHMI Investigator Frederick Alt

Researchers sifting through the indispensable machinery that senses and fixes broken DNA have discovered a new culprit that can induce instability in the genome and thereby set the stage for cancer to develop.

Studies in mice have shown that loss of H2AX, a gene that produces a protein called a histone that is part of the chromosomal structure, can tip the delicate balance of proteins that are curators of the human genome. When H2AX ceases to function properly, lymphomas and solid tumors can arise because errors in the genetic code are not always repaired correctly, according to the new research.

The finding may have important implications for understanding the origin of human cancers because a large number of human tumors are known to contain alterations in the region of chromosome 11 where the H2AX gene is located.

The research was reported in an article published in the August 8, 2003, issue of the journal Cell by Howard Hughes Medical Institute investigator Frederick Alt and colleagues at Children’s Hospital in Boston and Harvard Medical School. Other co-authors are from the Tufts University School of Veterinary Medicine and Brigham and Women’s Hospital.

According to Alt, previous studies by other researchers had shown that H2AX was activated when DNA breaks occur. DNA repair proteins fix genetic damage, but they are also called to action during the normal gene rearrangement that occurs in immune cells when they are readying to battle viruses and other threats.

To explore the implications of knocking out the H2AX gene, lead author Craig Bassing created a line of mice lacking both copies of the H2AX gene. “Both Craig in our lab and Andre Nussenzweig at the National Cancer Institute produced knockout strains that showed an increased level of genomic instability,” said Alt. Nussenzweig and his colleagues have published an article in the same issue of Cell on studies of their H2AX-knockout mice, and have found similar increases in genomic instability and cancer.

According to Alt, the mice lacking only H2AX genes had only a modest increase in cancer, “which is often the case for many genes that produce cancer, because they operate within a system of cellular checks and balances,” he said. “But when you eliminate two genes that may work in concert to maintain good genomic order, you see things happen that are much more dramatic.”

Thus, the researchers created a double-knockout mouse that lacked both H2AX and p53 — a gene that produces a molecular sentinel protein that suppresses proliferation of cells with damaged DNA. In previous studies, Alt and his colleagues had shown that loss of p53 in cells that lacked the DNA-repair process known as non-homologous end-joining (NHEJ) resulted in a dramatic increase in cancers.

“When we deleted both copies of H2AX and both copies of p53, we found a dramatically increased rate of tumors appearing beyond what would be seen with H2AX deficiency alone, and far, far beyond p53 deficiency alone,” said Alt. These cancers developed so rapidly that within a few months all the mice had died, he said. The resulting tumors included both lymphomas arising from aberrant immune cells — which would be common in the loss of NHEJ DNA repair function — and solid tumors, which are not normally seen when NHEJ is compromised.

The researchers also saw cancers arising from malfunction of DNA repair in mature immune cells called B cells. “These kinds of tumors are much more relevant to what goes on in a very large percentage of lymphomas in humans, and adults, in particular,” said Alt.

Alt said that the biggest surprise came when the researchers produced mice missing only one of the two copies of the H2AX gene. “Both surprising and potentially very significant for human cancers was that p53-deficient mice with deletion of one of their two copies of the H2AX gene came down with cancer much earlier,” he said. “They showed a very broad spectrum of tumors that was somewhat different than p53-deficient animals missing both H2AX genes.”

Furthermore, the studies showed that otherwise normal cells that were missing just one H2AX gene had only half the levels of H2AX and also showed genomic instability.

The possibility that only half the levels of the H2AX protein — called “haploinsufficiency” — triggers genomic instability and cancers could be highly significant, said Alt. Such a class of mutation would not have been readily detected in most searches for genes that suppress tumors in humans. Indeed, Bassing discovered that tumors in these mice still had a functioning H2AX gene.

“A major question is why haploinsufficiency of the H2AX protein can cause genomic instability and cancer,” said Alt. “One might explain that quite easily because the protein is not an enzyme, it’s a structural protein. So, if there’s half as much present, it could cause problems in monitoring breaks in the DNA and in recruiting components of the repair machinery.”

What may be especially relevant to human cancers, said Alt, is that the H2AX gene is located in a region of chromosome 11 known to be altered in many human tumors. While there are other potential cancer-causing genes in that region, he said, the current evidence from the mouse model indicates that H2AX will very likely prove a major player in cancer-causing genomic instability.

Alt and his colleagues are now collaborating with scientists at the Dana-Farber Cancer Institute to analyze the status of H2AX genes in a wide range of human cancers. “We believe that the loss of H2AX could prove a major source of the rampant instability associated with the progression of a variety of different tumors,” he said.

Contact: Jim Keeley,

Jim Keeley | Howard Hughes Medical Institute
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>