Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From studies of a rare human mutation to new approaches to herbicides or antibiotics


The promise of the genomics revolution - the ability to compare important genes and proteins from many different organisms - is that such detailed knowledge will produce new scientific insights that will improve human quality of life. In work on a key human enzyme, PBGS (porphobilinogen synthase), the laboratory of Fox Chase Cancer Center scientist Eileen K. Jaffe, Ph.D., has characterized a rare mutation that results in an unprecedented rearrangement of the enzyme´s structure. The discovery provides a key into how tiny genetic changes can have a giant evolutionary impact and may even lead to the development of novel herbicides and antibacterial agents.

The report, "Control of Tetrapyrrole Biosynthesis by Alternate Quaternary Forms of Porphobilinogen Synthase," appears in the September 2003 issue of Nature Structure Biology and as an advance online publication on the journal´s web site starting August 3. PBGS is one of a group of enzymes found in every organism from bacteria through plants and humans.

Important roles for PBGS include formation of chlorophyll in plants and the heme component of hemoglobin, the protein that carries oxygen in the blood. A September 1999 report of a routine screen of newborn infants for metabolic defects identified a new mutation in PBGS, termed F12L, that causes the enzyme to lose activity, as reported by Shigeru Sassa, M.D., Ph.D., of Rockefeller University and co-authors in the British Journal of Haematology.

Detailed analysis of this mutation by Jaffe´s group has now led to the startling conclusion that the tiny genetic change in F12L results in a drastic structural rearrangement of PBGS. In normal healthy humans, eight separate copies of the PBGS protein associate in a cloverleaf-shaped structure, resulting in an active enzyme complex. In the F12L mutant, however, two of the copies are bumped off, and the remaining six copies of PBGS protein associate in a completely different manner, producing a nearly inactive enzyme.

This type of change is unprecedented in the scientific literature, causing it to be of great interest to those who study protein structure. The fact that this change arises from a single amino acid substitution, affecting the smallest building block of protein structure, is of additional interest to evolutionary biologists. The finding suggests ways that small changes at critical points in protein sequences can lead to the production of totally new protein complexes.

Perhaps of greatest significance, as described in this and other publications by Jaffe, is the realization that the ability of the human PBGS protein to move between eight-copy and six-copy structures because of a mutation now explains previously mysterious results of experiments concerning the naturally occurring PBGS activity in plants and bacteria. Based on these new insights, it may be possible to develop chemical compounds that specifically shut down plant or bacterial forms of PBGS, providing a novel class of herbicides or antibacterial agents useful in areas as far-flung as treatment of patients or prevention of bacterial infection of specific crops.

Jaffe´s co-authors include postdoctoral associate Sabine Breinig, Ph.D., and scientific technician Linda Stith of Fox Chase; Jukka Kervinen, Ph.D., of 3-Dimensional Pharmaceuticals Inc. in Exton, Pa.; Robert Fairman, Ph.D., and Andrew S. Wasson of Haverford College; and Alexander Wlodawer, Ph.D., and Alexander Zdanov, Ph.D., of the National Cancer Institute´s Macromolecular Crystallography Laboratory in Frederick, Md.

Contact: Karen Carter Mallet,

Karen Carter Mallet | EurekAlert!

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>